Armstrong, D. W., Martin, S. M. and Yamazaki, H. (1984) ‘Production of ethyl acetate from dilute ethanol solutions by Candida utilis’, Biotechnol Bioeng, 26(9), pp. 1038–1041. doi: DOI 10.1002/bit.260260905.
Balzer, S. et al. (2013) ‘A comparative analysis of the properties of regulated promoter systems commonly used for recombinant gene expression in Escherichia coli’, Microbial Cell Factories, 12(1), pp. 1–14. doi: 10.1186/1475-2859-12-26.
Birkmann, A. et al. (1987) ‘Factors affecting transcriptional regulation of the formate-hydrogen-lyase pathway of Escherichia coli.’, Archives of Microbiology, 148(1), pp. 44–51. doi: 10.1007/BF00429646.
Blanch, H. W. (2012) ‘Bioprocessing for biofuels’, Current Opinion in Biotechnology. doi: 10.1016/j.copbio.2011.10.002.
Brentner, L. B., Peccia, J. and Zimmerman, J. B. (2010) ‘Challenges in developing biohydrogen as a sustainable energy source: implications for a research agenda’, Environmental Science and Technology, 44(7), pp. 2243–2254. doi: 10.1021/es9030613.
Davies, R. et al. (1951) ‘Ester formation by yeasts 1. Ethyl acetate formation by Hansenula species’, Biochemical Journal, 49(1), pp. 58–61.
Diaz Ricci, J. C. and Hernández, M. E. (2000) ‘Plasmid effects on Escherichia coli metabolism’, Critical Reviews in Biotechnology, 20(2), pp. 79–108. doi: 10.1080/07388550008984167.
van Dijken, J. P., Weusthuis, R. A. and Pronk, J. T. (1993) ‘Kinetics of growth and sugar consumption in yeasts’, Antonie van Leeuwenhoek. Kluwer Academic Publishers, 63(3–4), pp. 343–352. doi: 10.1007/BF00871229.
Dzialo, M. C. et al. (2017) ‘Physiology, ecology and industrial applications of aroma formation in yeast’, FEMS Microbiology Reviews. Oxford University Press, 41(Supp_1), pp. S95–S128. doi: 10.1093/femsre/fux031.
Fischer, E. and Speier, A. (1895) ‘Darstellung der Ester’, Chemische Berichte, 28, pp. 3252–3258.
Fredlund, E. et al. (2004) ‘Oxygen- and glucose-dependent regulation of central carbon metabolism in Pichia anomala’, Applied and Environmental Microbiology. American Society for Microbiology, 70(10), pp. 5905–5911. doi: 10.1128/Aem.70.10.5905-5911.2004.
Fujiwara, D. et al. (1999) ‘Molecular mechanism of the multiple regulation of the Saccharomyces cerevisiae ATF1 gene encoding alcohol acetyltransferase’, Yeast. doi: 10.1002/(SICI)1097-0061(19990915)15:12<1183::AID-YEA444>3.0.CO;2-J.
Garcia-Ochoa, F. and Gomez, E. (2009) ‘Bioreactor scale-up and oxygen transfer rate in microbial processes: An overview’, Biotechnology Advances. Elsevier, 27(2), pp. 153–176. doi: 10.1016/J.BIOTECHADV.2008.10.006.
Heßlinger, C., Fairhurst, S. A. A. and Sawers, G. (1998) ‘Novel keto acid formate-lyase and propionate kinase enzymes are components of an anaerobic pathway in Escherichia coli that degrades L-threonine to propionate’, Molecular Microbiology. Wiley/Blackwell (10.1111), 27(2), pp. 477–492. doi: 10.1046/j.1365-2958.1998.00696.x.
Horton, C. E. and Bennett, G. N. (2006) ‘Ester production in E. coli and C. acetobutylicum’, Enzyme and Microbial Technology, 38(7), pp. 937–943. doi: 10.1016/j.enzmictec.2005.08.025.
Jyoti, G. et al. (2018) ‘Homogeneous and heterogeneous catalyzed esterification of acrylic acid with ethanol: Reaction kinetics and modeling’, International Journal of Chemical Kinetics. Wiley-Blackwell, 50(5), pp. 370–380. doi: 10.1002/kin.21167.
Kruis, A. J. et al. (2017) ‘Ethyl acetate production by the elusive alcohol acetyltransferase from yeast’, Metabolic Engineering, 41, pp. 92–101. doi: 10.1016/j.ymben.2017.03.004.
Kruis, A. J. et al. (2018) ‘The alcohol acetyltransferase Eat1 is located in yeast mitochondria.’, Applied and environmental microbiology. American Society for Microbiology, 84(19), pp. e01640-18. doi: 10.1128/AEM.01640-18.
Kruis, A. J. et al. (2019) ‘Microbial production of short and medium chain esters: Enzymes, pathways, and applications’, Biotechnology advances, 37(7). doi: https://doi.org/10.1016/j.biotechadv.2019.06.006.
Kruis, A. J. et al. (in submission) ‘From Eat to trEat: Engineering the mitochondrial Eat1 enzyme for enhanced ethyl acetate production in Escherichia coli’. doi: 10.21203/rs.2.19484/v1.
Layton, D. S. and Trinh, C. T. (2016) ‘Expanding the modular ester fermentative pathways for combinatorial biosynthesis of esters from volatile organic acids’, Biotechnology and Bioengineering, 113(8), pp. 1764–1776. doi: 10.1002/bit.25947.
Lee, J.-W. and Trinh, C. T. (2019) ‘Microbial biosynthesis of lactate esters’, Biotechnology for Biofuels, 12(226). doi: 10.1186/s13068-019-1563-z.
Lee, J. and Trinh, C. T. (2018) ‘De novo microbial biosynthesis of a lactate ester platform’, bioRxiv, p. 498576. doi: 10.1101/498576.
Liu, Y., Lotero, E. and Goodwin, J. G. (2006) ‘Effect of water on sulfuric acid catalyzed esterification’, Journal of Molecular Catalysis A: Chemical. Elsevier, 245(1–2), pp. 132–140. doi: 10.1016/J.MOLCATA.2005.09.049.
Löbs, A.-K. et al. (2017) ‘CRISPR–Cas9-enabled genetic disruptions for understanding ethanol and ethyl acetate biosynthesis in Kluyveromyces marxianus’, Biotechnology for Biofuels. BioMed Central, 10(1), p. 164. doi: 10.1186/s13068-017-0854-5.
Löser, C. et al. (2012) ‘Formation of ethyl acetate by Kluyveromyces marxianus on whey during aerobic batch and chemostat cultivation at iron limitation’, Applied Microbiology and Biotechnology, 96(3), pp. 685–696. doi: 10.1007/s00253-012-4205-y.
Löser, C. et al. (2013) ‘Formation of ethyl acetate from whey by Kluyveromyces marxianus on a pilot scale’, Journal of Biotechnology. 2012/10/24. Elsevier, 163(1), pp. 17–23. doi: 10.1016/j.jbiotec.2012.10.009.
Löser, C., Urit, T., Gruner, E., et al. (2015) ‘Efficient growth of Kluyveromyces marxianus biomass used as a biocatalyst in the sustainable production of ethyl acetate’, Energy, Sustainability and Society, 5(1), p. 2. doi: 10.1186/s13705-014-0028-2.
Löser, C., Urit, T., Keil, P., et al. (2015) ‘Studies on the mechanism of synthesis of ethyl acetate in Kluyveromyces marxianus DSM 5422’, Applied Microbiology and Biotechnology, 99(3), pp. 1131–1144. doi: 10.1007/s00253-014-6098-4.
Löser, C., Urit, T. and Bley, T. (2014) ‘Perspectives for the biotechnological production of ethyl acetate by yeasts’, Applied Microbiology and Biotechnology, 98(12), pp. 5397–5415. doi: 10.1007/s00253-014-5765-9.
Malakar, P. and Venkatesh, K. V. V. (2012) ‘Effect of substrate and IPTG concentrations on the burden to growth of Escherichia coli on glycerol due to the expression of Lac proteins’, Applied Microbiology and Biotechnology, 93(6), pp. 2543–2549. doi: 10.1007/s00253-011-3642-3.
McDowall, J. S. et al. (2014) ‘Bacterial formate hydrogenlyase complex.’, Proceedings of the National Academy of Sciences of the United States of America. National Academy of Sciences, 111(38), pp. E3948-56. doi: 10.1073/pnas.1407927111.
Minetoki, T. et al. (1993) ‘The purification, properties and internal peptide sequences of alcohol acetyltransferase isolated from Saccharomyces cerevisiae Kyokai No. 7’, Bioscience Biotechnology and Biochemistry, 57(12), pp. 2094–2098.
Mossmann, D., Meisinger, C. and Vögtle, F. N. (2012) ‘Processing of mitochondrial presequences’, Biochimica et Biophysica Acta - Gene Regulatory Mechanisms. Elsevier, 1819(9–10), pp. 1098–1106. doi: 10.1016/j.bbagrm.2011.11.007.
Nancolas, B. et al. (2017) ‘Saccharomyces cerevisiae Atf1p is an alcohol acetyltransferase and a thioesterase in vitro’, Yeast, 34(6), pp. 239–251. doi: 10.1002/yea.3229.
Peel, J. L. (1951) ‘Ester formation by yeasts 2. Formation of ethyl acetate by washed suspensions of Hansenula anomala’, Biochemical Journal, 49(1), pp. 62–67.
Penfold, D. W., Forster, C. F. and Macaskie, L. E. (2003) ‘Increased hydrogen production by Escherichia coli strain HD701 in comparison with the wild-type parent strain MC4100’, Enzyme and Microbial Technology. Elsevier, 33(2–3), pp. 185–189. doi: 10.1016/S0141-0229(03)00115-7.
Rodriguez, G. M., Tashiro, Y. and Atsumi, S. (2014) ‘Expanding ester biosynthesis in Escherichia coli’, Nat Chem Biol. 2014/03/13. Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved., 10(4), pp. 259–265. doi: 10.1038/nchembio.1476.
Rossmann, R., Sawers, G. and Böck, A. (1991) ‘Mechanism of regulation of the formate‐hydrogenlyase pathway by oxygen, nitrate, and pH: definition of the formate regulon’, Molecular Microbiology. Wiley/Blackwell (10.1111), 5(11), pp. 2807–2814. doi: 10.1111/j.1365-2958.1991.tb01989.x.
Stephen, A. J. et al. (2017) ‘Advances and bottlenecks in microbial hydrogen production’, Microbial Biotechnology. Wiley/Blackwell (10.1111), 10(5), pp. 1120–1127. doi: 10.1111/1751-7915.12790.
Tabor, S. and Richardson, C. C. (1985) ‘A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes’, Proceedings of the National Academy of Sciences of the United States of America. National Academy of Sciences, 82(4), pp. 1074–1078. doi: 10.1073/pnas.82.4.1074.
The Market Publishers (2014) Global ETAC production to exceed 3.5 Mln tonnes in 2015, according to new report by Merchant Research and Consulting, prweb.
Urit, T. et al. (2011) ‘Formation of ethyl acetate by Kluyveromyces marxianus on whey: studies of the ester stripping’, Bioprocess and Biosystems Engineering, 34(5), pp. 547–559. doi: 10.1007/s00449-010-0504-9.
Urit, T, Manthey, R., et al. (2013) ‘Formation of ethyl acetate by Kluyveromyces marxianus on whey: Influence of aeration and inhibition of yeast growth by ethyl acetate’, Engineering in Life Sciences, 13(3), pp. 247–260. doi: DOI 10.1002/elsc.201200077.
Urit, T, Li, M., et al. (2013) ‘Growth of Kluyveromyces marxianus and formation of ethyl acetate depending on temperature’, Appl Microbiol Biotechnol, 97(24), pp. 10359–10371. doi: 10.1007/s00253-013-5278-y.
Verduyn, C. et al. (1992) ‘Effect of benzoic acid on metabolic fluxes in yeasts: A continuous-culture study on the regulation of respiration and alcoholic fermentation’, Yeast. John Wiley & Sons, Ltd., 8(7), pp. 501–517. doi: 10.1002/yea.320080703.
Vögtle, F.-N. et al. (2011) ‘Mitochondrial protein turnover: role of the precursor intermediate peptidase Oct1 in protein stabilization.’, Molecular biology of the cell. American Society for Cell Biology, 22(13), pp. 2135–2143. doi: 10.1091/mbc.E11-02-0169.
Vuoristo, K. S. et al. (2015) ‘Metabolic engineering of the mixed-acid fermentation pathway of Escherichia coli for anaerobic production of glutamate and itaconate.’, AMB Express. Springer, 5(1), p. 61. doi: 10.1186/s13568-015-0147-y.
Warnecke, T. and Gill, R. T. (2005) ‘Organic acid toxicity, tolerance, and production in Escherichia coli biorefining applications’, Microbial Cell Factories. BioMed Central, 4, p. 25. doi: 10.1186/1475-2859-4-25.
Weusthuis, R. A. et al. (2011) ‘Microbial production of bulk chemicals: development of anaerobic processes’, Trends in Biotechnology, 29(4), pp. 153–158. doi: 10.1016/j.tibtech.2010.12.007.
Wilbanks, B. and Trinh, C. T. (2017) ‘Comprehensive characterization of toxicity of fermentative metabolites on microbial growth’, Biotechnology for Biofuels. BioMed Central, 10(262). doi: 10.1186/s13068-017-0952-4.
Wolfe, A. J. (2005) ‘The acetate switch’, Microbiology and molecular biology reviews : MMBR. American Society for Microbiology (ASM), 69(1), pp. 12–50. doi: 10.1128/MMBR.69.1.12-50.2005.
Yin, J. et al. (2007) ‘Select what you need: a comparative evaluation of the advantages and limitations of frequently used expression systems for foreign genes.’, Journal of biotechnology, 127(3), pp. 335–47. doi: 10.1016/j.jbiotec.2006.07.012.
Yoshida, A. et al. (2005) ‘Enhanced hydrogen production from formic acid by formate hydrogen lyase-overexpressing Escherichia coli strains.’, Applied and environmental microbiology. American Society for Microbiology, 71(11), pp. 6762–8. doi: 10.1128/AEM.71.11.6762-6768.2005.
Yukawa, H. et al. (2007) ‘Manipulation of formate hydrogen lyase system in E. coli for increase its hydrogen generation capacity.’, Jpn. Kokai Tokkyo Koho.
Zhu, J. et al. (2015) ‘Microbial host selection affects intracellular localization and activity of alcohol-Oacetyltransferase’, Microbial Cell Factories, 14(1), pp. 1–10. doi: 10.1186/s12934-015-0221-9.
Zinoni, F. et al. (1984) ‘Regulation of the synthesis of hydrogenase (formate hydrogen-lyase linked) of E. coli’, Archives of Microbiology, 139(4), pp. 299–304. doi: 10.1007/BF00408370.