1 Wyatt, R.J.& Julian, B.A.IgA nephropathy. N Engl J Med. 368, 2402-14(2013).
2 Tomino, Y. Predictors of prognosis in IgA nephropathy. Kaohsiung J Med Sci.28, 517-20(2012).
3 Corona, G.et al. Hyponatremia improvement is associated with a reduced risk of mortality. evidence from a meta-analysis. PloS one. 23;10(2015).
4 Raphael, K., Wei, G., Baird, B., Greene, T. & Beddhu, S. Higher serum bicarbonate levels within the normal range are associated with better survival and renal outcomes in African Americans. Kidney international 79, 356-62(2011).
5 Kovesdy, C., Anderson, J.& Kalantar-Zadeh, K. Association of serum bicarbonate levels with mortality in patients with non-dialysis-dependent CKD. Nephrol Dial Transplant. 24, 1232-7(2009).
6 Luo, J., Brunelli, S., Jensen, D. & Yang, A. Association between Serum Potassium and Outcomes in Patients with Reduced Kidney Function. Clin J Am Soc Nephrol. 11, 90-1009(2016).
7 Dhondup, T.& Qian, Q. Electrolyte and Acid-Base Disorders in Chronic Kidney Disease and End-Stage Kidney Failure. Blood Purif 43,179-88 (2017).
8 Berend, K., Van Hulsteijn L.H. & Gans,R.O. Chloride: the queen of electrolytes? Eur J Intern Med 23, 203-11(2012).
9 Shires G, Holman J. Dilution acidosis. Annals of internal medicine 28, 557-9(1948).
10 Black, D. Body-fluid depletion. Lancet (London, England)1, 305-11(1953).
11 Tang, Y., Zhou, J. & Guan, Y. Volume-regulated chloride channels and cerebral vascular remodelling. Clin Exp Pharmacol Physiol.37, 238-42(2010).
12 Veizis, I.& Cotton, C. Role of kidney chloride channels in health and disease. Pediatr Nephrol.22, 770-7(2007).
13 Puljak, L.& Kilic, G. Emerging roles of chloride channels in human diseases. Biochimica et biophysica acta .1762, 404-13(2006).
14 Wilcox, C.S. Regulation of renal blood flow by plasma chloride. J Clin Invest 71,726-735(1983).
15 Neyra, J.A.et al. Association of Hyperchloremia With Hospital Mortality in Critically Ill Septic Patients. Crit Care Med. 43, 1938-44(2015).
16 Bullivant, E.M., Wilcox, C.S.& Welch, W.J. Intrarenal vasoconstriction during hyperchloremia: role of thromboxane. Am J Physiol 256,F152-7(1989).
17 Tanaka, M., Schmidlin, O., Olson, J.L., Yi, S.L.& Morris, R.C. Chloride-sensitive renal microangiopathy in the stroke-prone spontaneously hypertensive rat. Kidney Int 59,1066-76(2001).
18 Yunos, N. M.et al. Chloride-liberal vs. chloride-restrictive intravenous fluid administration and acute kidney injury: an extended analysis. Intensive Care Med 41, 257-64(2015).
19 Liang, S.et al. Urinary sediment miRNAs reflect tubulointerstitial damage and therapeutic response in IgA nephropathy.BMC Nephrol18: 63(2017).
20 KDIGO glomerulonephritis(GN) guideline.2012, 2(1) https://kdigo.org/guidelines/gn/
21 Guo, W.Y.et al. Mannose-Binding Lectin Levels Could Predict Prognosis in IgA Nephropathy. J Am Soc Nephrol 28,3175-3181(2017).
22 Barbour, S. J.et al. International Ig A N N: Evaluating a New International Risk-Prediction Tool in IgA Nephropathy.JAMA Intern Med 179,942-952(2019).
23 Zhao, Y. F.et al. Measures of Urinary Protein and Albumin in the Prediction of Progression of IgA Nephropathy. Clin J Am Soc Nephrol 11,947-55(2016).
24 Moran, S.& Cattran, D. Recent advances in risk prediction, therapeutics and pathogenesis of IgA nephropathy. Minerva medica 110, 439-49 (2019).
25 Ni, Z.et al. Time-averaged albumin predicts the long-term prognosis of IgA nephropathy patients who achieved remission. J Transl 12,194(2014).
26 Szeto, C. C.& Li, P. K. MicroRNAs in IgA nephropathy. Nat Rev Nephrol10, 249-56(2014).
27 Chen, P.et al. Plasma Galactose-Deficient IgA1 and C3 and CKD Progression in IgA Nephropathy. Clin J Am Soc Nephrol 14, 1458-65(2019).
28 Neuhaus, J.et al. Urinary Biomarkers in the Prediction of Prognosis and Treatment Response in IgA Nephropathy.Kidney Blood Press Res. 43, 1563-72(2018).
29 Yunos, N.M., Bellomo, R., Story, D.& Kellum, J. Bench-to-bedside review: Chloride in critical illness. Crit Care 14:226(2010).
30 Shah, S.N., Abramowitz, M., Hostetter, T.H,& Melamed, M.L. Serum bicarbonate levels and the progression of kidney disease: a cohort study. Am J Kidney Dis 54,270-7(2019).
31 Raphael, K.L., Wei, G., Baird, B.C., Greene, T.& Beddhu, S. Higher serum bicarbonate levels within the normal range are associated with better survival and renal outcomes in African Americans. Kidney Int 79,356-62(2011).
32 Mazumdar, M.& Glassman, J.R. Categorizing a prognostic variable: review of methods, code for easy implementation and applications to decision-making about cancer treatments. Stat Med 15;19:113-32(2000).
33 Mazumdar, M., Smith, A.& Bacik, J. Methods for categorizing a prognostic variable in a multivariable setting. Stat Med 22, 559-71(2003).
34 Heagerty, P.J., Lumley, T.& Pepe, M.S. Time-dependent ROC curves for censored survival data and a diagnostic marker. Biometrics 56,337-44(2000).
35 Durward, A.et al.The value of the chloride: sodium ratio in differentiating the aetiology of metabolic acidosis. Intensive care medicine 27, 828-35(2001).
36 Gheorghe, C.et al. Hyperchloremic metabolic acidosis following resuscitation of shock. Chest 138, 1521-2(2010).
37 Frische, S., Kwon, T., Frøkiaer, J., Madsen, K.& Nielsen, S. Regulated expression of pendrin in rat kidney in response to chronic NH4Cl or NaHCO3 loading. Am J Physiol Renal Physiol 284, F584-93(2003).
38 O'malley, C.et al. A randomized, double-blind comparison of lactated Ringer's solution and 0.9% NaCl during renal transplantation. Anesth Analg 100, 1518-24(2005).
39 Planelles, G. Chloride transport in the renal proximal tubule. Pflugers Archiv.448,561-70(2004).