[1] S. Elmuogy, N. A. Hikal, and E. Hassan, “An efficient technique for CT scan images classification of COVID-19,” vol. 40, pp. 5225–5238, 2021, doi: 10.3233/JIFS-201985.
[2] O. M. Elzeki, M. Shams, S. Sarhan, M. A. Elfattah, and A. E. Hassanien, “COVID-19: a new deep learning computer-aided model for classification,” PeerJ Comput. Sci., vol. 7, pp. 1–33, 2021, doi: 10.7717/peerj-cs.358.
[3] M. Y. Shams, S. H. Sarhan, and A. S. Tolba, “Adaptive deep learning vector quantisation for multimodal authentication,” J. Inf. Hiding Multimed. Signal Process., vol. 8, no. 3, pp. 702–722, 2017.
[4] L. Chen, G. Papandreou, S. Member, I. Kokkinos, K. Murphy, and A. L. Yuille, “DeepLab : Semantic Image Segmentation with Deep Convolutional Nets , Atrous Convolution , and Fully Connected CRFs,” pp. 1–14.
[5] H. Pham, Z. Dai, Q. Xie, M. Luong, and Q. V Le, “Meta Pseudo Labels,” 2012.
[6] H. Hirano, K. Koga, and K. Takemoto, “Vulnerability of deep neural networks for detecting COVID-19 cases from chest X-ray images to universal adversarial attacks,” PLoS One, vol. 15, no. 12, 2020, doi: 10.1371/journal.pone.0243963.
[7] “Deep learning for computer-aided medical diagnosis,” Multimed. Tools Appl., vol. 79, no. 21–22, pp. 15073–15073, 2020, doi: 10.1007/s11042-020-08940-4.
[8] K. Li, L. Yu, S. Wang, and P. A. Heng, “Towards cross-modality medical image segmentation with online mutual knowledge distillation,” AAAI 2020 - 34th AAAI Conf. Artif. Intell., pp. 775–783, 2020, doi: 10.1609/aaai.v34i01.5421.
[9] K. Gao et al., “Dual-branch combination network (DCN): towards accurate diagnosis and lesion segmentation of COVID-19 using CT images,” Med. Image Anal., vol. 67, p. 101836, 2020, doi: 10.1016/j.media.2020.101836.
[10] “Skin dataset.” .
[11] S. Motamed, P. Rogalla, and F. Khalvati, “RANDGAN: Randomized generative adversarial network for detection of COVID-19 in chest X-ray,” Sci. Rep., vol. 11, no. 1, pp. 1–10, 2021, doi: 10.1038/s41598-021-87994-2.
[12] Y. Kim, J. Park, M. Chang, J. Ryu, W. H. Lim, and S. Jung, “Influence of the Depth of the Convolutional Neural Networks on an Artificial Intelligence Model for Diagnosis of Orthognathic Surgery,” 2021.
[13] J. Qin, W. Pan, X. Xiang, Y. Tan, and G. Hou, “A biological image classification method based on improved CNN,” Ecol. Inform., vol. 58, no. January, p. 101093, 2020, doi: 10.1016/j.ecoinf.2020.101093.
[14] V. Noroozi, Y. Zhang, E. Bakhturina, and T. Kornuta, “A fast and robust BERT-based dialogue state tracker for schema-guided dialogue dataset,” CEUR Workshop Proc., vol. 2666, no. August, 2020.
[15] G. Van Horn et al., “The iNaturalist Species Classification and Detection Dataset,” 2017.
[16] S. K. Datta, M. A. Shaikh, S. N. Srihari, and M. Gao, “Soft Attention Improves Skin Cancer Classification Performance,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 12929 LNCS, pp. 13–23, 2021, doi: 10.1007/978-3-030-87444-5_2.
[17] A. Mahbod, P. Tschandl, G. Langs, and R. Ecker, “The Effects of Skin Lesion Segmentation on the Performance of Dermatoscopic Image Classification arXiv : 2008 . 12602v1 [ cs . CV ] 28 Aug 2020,” pp. 1–40, 2020.
[18] K. M. Hosny, M. A. Kassem, and M. M. Foaud, “Skin Cancer Classification using Deep Learning and Transfer Learning,” 2018 9th Cairo Int. Biomed. Eng. Conf. CIBEC 2018 - Proc., pp. 90–93, 2019, doi: 10.1109/CIBEC.2018.8641762.
[19] N. Hameed, A. M. Shabut, M. K. Ghosh, and M. A. Hossain, “Multi-class multi-level classification algorithm for skin lesions classification using machine learning techniques,” Expert Syst. Appl., vol. 141, p. 112961, 2020, doi: 10.1016/j.eswa.2019.112961.
[20] H. Nadipineni, “METHOD TO CLASSIFY SKIN LESIONS USING DERMOSCOPIC IMAGES,” 2020.
[21] R. Mart, “DSNet : Automatic Dermoscopic Skin Lesion Segmentation,” pp. 1–25.
[22] T. Kieu, K. Ho, and J. Gwak, “Utilizing Knowledge Distillation in Deep Learning for Classification of Chest X-ray Abnormalities,” 2020, doi: 10.1109/ACCESS.2020.3020802.
[23] J. Zhang, Y. Xie, Q. Wu, and Y. Xia, “Medical image classification using synergic deep learning,” Med. Image Anal., vol. 54, pp. 10–19, 2019, doi: 10.1016/j.media.2019.02.010.
[24] A. Sroka-oleksiak, D. Rymarczyk, A. Piekarczyk, and M. Brzychczy-wloch, “Deep learning approach to describe and classify fungi microscopic images,” 2020.