[1] Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet, 2018;392(10159): 1736-1788.
[2] Wang F, Xu CQ, He Q, Cai JP, Li XC, Wang D, et al. Genome-wide association identifies a susceptibility locus for coronary artery disease in the Chinese Han population. Nat Genet 2011; 43(4): 345-9.
[3] Khera AV and Kathiresan S. Genetics of coronary artery disease: discovery, biology and clinical translation. Nat Rev Genet 2017; 18(6): 331-344.
[4] Samani NJ, Erdmann J, Hall AS, Hengstenberg C, Mangino M, Mayer B, et al. Genomewide association analysis of coronary artery disease. N Engl J Med 2007; 357(5):443-53.
[5] The Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature, 2007. 447(7145): 661-78.
[6] The Coronary Artery Disease (C4D) Genetics Consortium. A genome-wide association study in Europeans and South Asians identifies five new loci for coronary artery disease. Nat Genet 2011; 43(4):339-44.
[7] Nikpay M, Goel A, Won HH, Hall LM, Willenborg C, Kanoni S, et al. A comprehensive 1,000 Genomes-based genome-wide association meta-analysis of coronary artery disease. Nat Genet 2015;47(10):1121-1130.
[8] Musunuru K, Kathiresan S. Surprises From Genetic Analyses of Lipid Risk Factors for Atherosclerosis. Circ Res 2016; 118(4): 579-85.
[9] Jeff JM, Peloso GM, Do R. What can we learn about lipoprotein metabolism and coronary heart disease from studying rare variants? Curr Opin Lipidol 2016; 27(2):99-104.
[10] Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter D J, et al. Finding the missing heritability of complex diseases. Nature 2009; 461(7265):747-53.
[11] Boyko AR, Boyko AR, Williamson SH, Indap AR, Degenhardt JD, Hernandez RD, Lohmueller KE, et al. Assessing the evolutionary impact of amino acid mutations in the human genome. PLoS Genet 2008; 4(5): e1000083.
[12] Sadananda SN, Foo JN, Toh MT, Cermakova L, Trigueros-Motos L, Chan T, et al. Targeted next-generation sequencing to diagnose disorders of HDL cholesterol. J Lipid Res 2015;56(10):1993-2001.
[13] Safarova MS, Fan X, Austin EE, van Zuydam N, Hopewell J, Schaid DJ, et al. Targeted Sequencing Study to Uncover Shared Genetic Susceptibility Between Peripheral Artery Disease and Coronary Heart Disease-Brief Report. Arterioscler Thromb Vasc Biol 2019; 39(6): 1227-1233.
[14] Sikkema-Raddatz B, Johansson LF, de Boer EN, Almomani R, Boven LG, van den Berg MP, et al. Targeted next-generation sequencing can replace Sanger sequencing in clinical diagnostics. Hum Mutat 2013; 34(7):1035-42.
[15] Adzhubei I, Jordan DM, Sunyaev SR. Predicting functional effect of human missense mutations using PolyPhen-2. Curr Protoc Hum Genet 2013; Chapter 7:Unit7.20.
[16] Choi Y, Sims GE, Murphy S, Miller JR, Chan AP. Predicting the functional effect of amino acid substitutions and indels. PLoS One, 2012. 7(10): p. e46688.
[17] Bamshad MJ, Ng SB, Bigham AW, Tabor HK, Emond MJ, Nickerson DA, et al. Exome sequencing as a tool for Mendelian disease gene discovery. Nat Rev Genet 2011; 12(11):745-55.
[18] Bruikman CS, Dalila N, van Capelleveen JC, Kroon J, Peter J, Havik SR, et al. Genetic variants in SUSD2 are associated with the risk of ischemic heart disease. J Clin Lipidol 2020; 14(4):470-481.
[19] Zanoni P, Khetarpal SA, Larach DB, Hancock-Cerutti WF, Millar JS, Cuchel M, et al. Rare variant in scavenger receptor BI raises HDL cholesterol and increases risk of coronary heart disease. Science 2016; 351(6278):1166-71.
[20] Crosby J, Peloso GM, Auer PL, Crosslin DR, Stitziel NO, Lange LA, et al. Loss-of-function mutations in APOC3, triglycerides, and coronary disease. N Engl J Med 2014; 371(1): 22-31.
[21] Dewey FE, Gusarova V, O'Dushlaine C, Gottesman O, Trejos J, Hunt C, et al. Inactivating Variants in ANGPTL4 and Risk of Coronary Artery Disease. N Engl J Med 2016; 374(12): 1123-33.
[22] Musunuru K, Pirruccello JP, Do R, Peloso GM, Guiducci C, Sougnez C, et al. Exome sequencing, ANGPTL3 mutations, and familial combined hypolipidemia. N Engl J Med 2010; 363(23):2220-7.
[23] Do R, Stitziel NO, Won HH, Jorgensen AB, Duga S, Angelica MP, et al. Exome sequencing identifies rare LDLR and APOA5 alleles conferring risk for myocardial infarction. Nature 2015; 518(7537): 102-6.
[24] Mitchell BD, Fornage M, McArdle PF, Cheng YC, Pulit SL, Wong Q, et al. Using previously genotyped controls in genome-wide association studies (GWAS): application to the Stroke Genetics Network (SiGN). Front Genet 2014;5: 95.