1. Chénais B, Caruso A, Hiard S, Casse NJG. The impact of transposable elements on eukaryotic genomes: from genome size increase to genetic adaptation to stressful environments. 2012;509(1):7-15.
2. Jedlicka P, Lexa M, Vanat I, Hobza R, Kejnovsky EJMD. Nested plant LTR retrotransposons target specific regions of other elements, while all LTR retrotransposons often target palindromes and nucleosome-occupied regions: in silico study. 2019;10(1):1-14.
3. Lanciano S, Cristofari GJNRG. Measuring and interpreting transposable element expression. 2020;21(12):721-36.
4. Zhang Q-J, Gao L-ZJGG, Genomes, Genetics. Rapid and recent evolution of LTR retrotransposons drives rice genome evolution during the speciation of AA-genome Oryza species. 2017;7(6):1875-85.
5. Shahid S, Slotkin RKJCoipb. The current revolution in transposable element biology enabled by long reads. 2020;54:49-56.
6. Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B, et al. A unified classification system for eukaryotic transposable elements. 2007;8(12):973-82.
7. Gao L, McCarthy EM, Ganko EW, McDonald JFJBG. Evolutionary history of Oryza sativa LTR retrotransposons: a preliminary survey of the rice genome sequences. 2004;5(1):1-18.
8. Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S, et al. The B73 maize genome: complexity, diversity, and dynamics. 2009;326(5956):1112-5.
9. Kumar A, Bennetzen JLJArog. Plant retrotransposons. 1999;33(1):479-532.
10. Novoselskaya-Dragovich AY, Fisenko AV, Konovalov FA, Mitrofanova OP, Shishkina AA, Kudryavtsev AMJGr, et al. Analysis of genetic diversity and evolutionary relationships among hexaploid wheats Triticum L. using LTR-retrotransposon-based molecular markers. 2018;65(1):187-98.
11. Hsu C-C, Chen S-Y, Lai P-H, Hsiao Y-Y, Tsai W-C, Liu Z-J, et al. Identification of high-copy number long terminal repeat retrotransposons and their expansion in Phalaenopsis orchids. 2020;21(1):1-13.
12. Jouffroy O, Saha S, Mueller L, Quesneville H, Maumus FJBg. Comprehensive repeatome annotation reveals strong potential impact of repetitive elements on tomato ripening. 2016;17(1):1-15.
13. Natali L, Cossu RM, Mascagni F, Giordani T, Cavallini AJTG, Genomes. A survey of Gypsy and Copia LTR-retrotransposon superfamilies and lineages and their distinct dynamics in the Populus trichocarpa (L.) genome. 2015;11(5):1-13.
14. Qin C, Yu C, Shen Y, Fang X, Chen L, Min J, et al. Whole-genome sequencing of cultivated and wild peppers provides insights into Capsicum domestication and specialization. 2014;111(14):5135-40.
15. Cho J, Benoit M, Catoni M, Drost H-G, Brestovitsky A, Oosterbeek M, et al. Sensitive detection of pre-integration intermediates of long terminal repeat retrotransposons in crop plants. 2019;5(1):26-33.
16. Dooner HK, Wang Q, Huang JT, Li Y, He L, Xiong W, et al. Spontaneous mutations in maize pollen are frequent in some lines and arise mainly from retrotranspositions and deletions. 2019;116(22):10734-43.
17. Griffiths J, Catoni M, Iwaski M, Paszkowski J. Sequence-independent identification of active LTR retrotransposons in Arabidopsis. 2018.
18. Esposito S, Barteri F, Casacuberta J, Mirouze M, Carputo D, Aversano RJP. LTR-TEs abundance, timing and mobility in Solanum commersonii and S. tuberosum genomes following cold-stress conditions. 2019;250(5):1781-7.
19. Cho J. Transposon-derived non-coding RNAs and their function in plants. Frontiers in plant science. 2018;9:600.
20. Campo S, Sánchez‐Sanuy F, Camargo‐Ramírez R, Gómez‐Ariza J, Baldrich P, Campos‐Soriano L, et al. A novel Transposable element‐derived microRNA participates in plant immunity to rice blast disease. 2021.
21. Akakpo R, Carpentier MC, Ie Hsing Y, Panaud OJNP. The impact of transposable elements on the structure, evolution and function of the rice genome. 2020;226(1):44-9.
22. Ma J, Devos KM, Bennetzen JLJGr. Analyses of LTR-retrotransposon structures reveal recent and rapid genomic DNA loss in rice. 2004;14(5):860-9.
23. Anderson SN, Stitzer MC, Brohammer AB, Zhou P, Noshay JM, O'Connor CH, et al. Transposable elements contribute to dynamic genome content in maize. The Plant Journal. 2019;100(5):1052-65.
24. Mascagni F, Giordani T, Ceccarelli M, Cavallini A, Natali L. Genome-wide analysis of LTR-retrotransposon diversity and its impact on the evolution of the genus Helianthus (L.). BMC genomics. 2017;18(1):1-16.
25. Qiu F, Ungerer MC. Genomic abundance and transcriptional activity of diverse gypsy and copia long terminal repeat retrotransposons in three wild sunflower species. BMC plant biology. 2018;18(1):1-8.
26. Meyers BC, Tingey SV, Morgante M. Abundance, distribution, and transcriptional activity of repetitive elements in the maize genome. Genome Research. 2001;11(10):1660-76.
27. Vukich M, Giordani T, Natali L, Cavallini A. Copia and Gypsy retrotransposons activity in sunflower (Helianthus annuus L.). BMC Plant Biology. 2009;9(1):1-12.
28. Kirov I, Omarov M, Merkulov P, Dudnikov M, Gvaramiya S, Kolganova E, et al. Genomic and Transcriptomic Survey Provides New Insight into the Organization and Transposition Activity of Highly Expressed LTR Retrotransposons of Sunflower (Helianthus annuus L.). 2020;21(23):9331.
29. Nie Q, Qiao G, Peng L, Wen XJPP, Biochemistry. Transcriptional activation of long terminal repeat retrotransposon sequences in the genome of pitaya under abiotic stress. 2019;135:460-8.
30. Tiwari KS, Srivastava Y, Singh VK, Singh M, Singh BJVS. LTR retroelement in genes related to abiotic stress in Capsicum annuum L. 2017;44(2):1-7.
31. Cavrak VV, Lettner N, Jamge S, Kosarewicz A, Bayer LM, Mittelsten Scheid OJPg. How a retrotransposon exploits the plant's heat stress response for its activation. 2014;10(1):e1004115.
32. Sabot F, Picault N, El‐Baidouri M, Llauro C, Chaparro C, Piegu B, et al. Transpositional landscape of the rice genome revealed by paired‐end mapping of high‐throughput re‐sequencing data. 2011;66(2):241-6.
33. Hirochika H. Contribution of the Tos17 retrotransposon to rice functional genomics. Current opinion in plant biology. 2001;4(2):118-22.
34. Cheng C, Daigen M, Hirochika HJMG, Genomics. Epigenetic regulation of the rice retrotransposon Tos17. 2006;276(4):378-90.
35. Chen J, Lu L, Benjamin J, Diaz S, Hancock CN, Stajich JE, et al. Tracking the origin of two genetic components associated with transposable element bursts in domesticated rice. 2019;10(1):1-10.
36. Biémont C, Vieira C. Junk DNA as an evolutionary force. Nature. 2006;443(7111):521-4.
37. Feschotte C, Pritham EJ. DNA transposons and the evolution of eukaryotic genomes. Annu Rev Genet. 2007;41:331-68.
38. Pearce S, Knox M, Ellis T, Flavell A, Kumar A. Pea Ty1-copia group retrotransposons: transpositional activity and use as markers to study genetic diversity in Pisum. Molecular and General Genetics MGG. 2000;263(6):898-907.
39. Jiménez‐Ruiz J, Ramírez‐Tejero JA, Fernández‐Pozo N, Leyva‐Pérez MdlO, Yan H, Rosa Rdl, et al. Transposon activation is a major driver in the genome evolution of cultivated olive trees (Olea europaea L.). 2020;13(1):e20010.
40. Qin Y, Shin K-S, Woo H-J, Lim M-H. Genomic variations of rice regenerants from tissue culture revealed by whole genome re-sequencing. Plant Breeding and Biotechnology. 2018;6(4):426-33.
41. Zhang R-G, Wang Z-X, Ou S, Li G-YJb. TEsorter: lineage-level classification of transposable elements using conserved protein domains. 2019:800177.
42. Katoh K, Standley DMJMb, evolution. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. 2013;30(4):772-80.
43. Nguyen L-T, Schmidt HA, Von Haeseler A, Minh BQJMb, evolution. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. 2015;32(1):268-74.
44. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of molecular evolution. 1980;16(2):111-20.
45. Ma J, Bennetzen JL. Rapid recent growth and divergence of rice nuclear genomes. Proceedings of the National Academy of Sciences. 2004;101(34):12404-10.
46. Jeon J-S, Chung Y-Y, Lee S, Yi G-H, Oh B-G, An G. Isolation and characterization of an anther-specific gene, RA8, from rice (Oryza sativa L.). Plant molecular biology. 1999;39(1):35-44.
47. Bolger AM, Lohse M, Usadel BJB. Trimmomatic: a flexible trimmer for Illumina sequence data. 2014;30(15):2114-20.
48. Langmead B, Salzberg SLJNm. Fast gapped-read alignment with Bowtie 2. 2012;9(4):357-9.
49. Liao Y, Smyth GK, Shi WJB. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. 2014;30(7):923-30.
50. Thorvaldsdóttir H, Robinson JT, Mesirov JPJBib. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. 2013;14(2):178-92.