[1]
|
T. R. Ray, B. Lettiere, J. d. Rutte and S. Pennathur, "Quantitative Characterization of the Colloidal Stability of Metallic Nanoparticles Using UV−vis Absorbance Spectroscopy," Langmuir, vol. 31, pp. 3577-3586, 2015.
|
[2]
|
J. Singh, T. Dutta, K. Kim, M. Rawat, P. Samddar and P. Kumar, "‘Green’ synthesis of metals and their oxide nanoparticles: applications for environmental remediation," Journal of Nanobiotechnology, vol. 16, p. 84, 2018.
|
[3]
|
M. Herlekar, S. Barve and R. Kumar, "Plant-Mediated Green Synthesis of Iron Nanoparticles," Journal of Nanoparticles, vol. 2014, p. 140614, 2014.
|
[4]
|
J. K. Patra and K. Baek, "Green Nanobiotechnology: Factors Affecting Synthesis and Characterization Techniques," Journal of Nanomaterials, vol. 2014, no. 417305, 2014.
|
[5]
|
R. Krishnamoorthi, S. Bharathakumar, B. Malaikozhundan and P. U. Mahalingam, "Mycofabrication of gold nanoparticles: Optimization, characterization, stabilization and evaluation of its antimicrobial potential on selected human pathogens," Biocatalysis and Agricultural Biotechnology, vol. 35, no. 102107, 2021.
|
[6]
|
A. Nene, K. W. M. Takahashi and M. Umeno, " Size controlled synthesis of Fe3O4 nanoparticles by ascorbic acid mediated reduction of Fe(acac)3 without using capping agent," Journal of Nano Research 2016, pp. 8-19, 2016.
|
[7]
|
N. Ajinkya, X. Yu, P. Kaithal, H.Luo, P. Somani and S. Ramakrishna, "Magnetic Iron Oxide Nanoparticle (IONP) Synthesis to Applications: Present and Future," Materials, vol. 13, 2020.
|
[8]
|
J. Kudr, Y. Haddad, L. Richtera, Z. Heger, M. Cernak, V. Adam and O. Zitka, "Magnetic nanoparticles: from design and synthesis to real world applications," Nanomaterials (Basel), vol. 7, 2017.
|
[9]
|
Q. Feng, Y. Liu, J. Huang, K. Chen, J. Huang and K. Xiao, "Uptake, distribution, clearance, and toxicity of iron oxide nanoparticles with different sizes and coatings," Scientific Reports, vol. 2018, p. 2082, 2018.
|
[10]
|
W. Li, D. Liu, J. Wu, C. Kim and J. D. Fortner, "Aqueous Aggregation and Surface Deposition Processes of Engineered Superparamagnetic Iron Oxide Nanoparticles for Environmental Applications," Environmental Science & Technology, vol. 48, p. 11892–11900, 2014.
|
[11]
|
V. Velmurugan, G. Arunachalam and V. Ravichandran, "Antibacterial activity of stem bark of Prosopis cineraria (Linn.) druce," Archives of Applied Science Research, vol. 2, pp. 147-150, 2010.
|
[12]
|
F. A. Ayaz, H. Torun, S. Ayaz, P. J. Correira, M. Alaiz, C. Sanz, J. Grux and M. Strnad, "Determination of chemical composition of Anatolian carob pod (Ceratonia Siliqua L.): Sugars, amino and organic acids, minerals and phenolic compounds," Journal of Food Quality, vol. 30, pp. 1040-1055, 2007.
|
[13]
|
S. K. Karna, R. V.Singh and R. S. , "Application of Taguchi method in process optimization," in Proceedings of the National Conference on Trends and Advances in Mechanical Engineering, Faridabad, 2012.
|
[14]
|
D. A. Demirezen, Y. Ş. Yıldız, Ş. Yılmaz and D. Demirezen Yılmaz, "Green synthesis and characterization of iron oxide nanoparticles using Ficus carica (common fig) dried fruit extract," Journal of Bioscience and Bioengineering, vol. 127, pp. 241-245, 2019.
|
[15]
|
M. Danaei, M. Dehghankhold, S. Ataei, F. H. Davarani, R. Javanmard, A. Dokhani, S. Khorasani and M. R. Mozafari, "Impact of Particle Size and Polydispersity Index on the Clinical Applications of Lipidic Nanocarrier Systems," Pharmaceutics, vol. 10, p. 57, 2018, 10, 57.
|
[16]
|
K. Tahir, S. Nazir, B. Li, A. U. Khan, Z. U. H. Khan, A. Ahmad and F. U. Khan, "An efficient photo catalytic activity of green synthesized silver nanoparticles using Salvadora persica stem extract," Separation and Purification Technology, vol. 150, pp. 316-324, 2015.
|
[17]
|
R. A. Hamouda, M. H. Hussein, R. A. Abo-elmagd and S. Bawazir, "Synthesis and biological characterization of silver nanoparticles derived from the cyanobacterium Oscillatoria limnetica," Scientific Reports, vol. 9, no. 13071, 2019.
|
[18]
|
M. Y. Junaidi, E. S. Harsojo and T. Kuwat, "Effect of Stirring Rate on The Synthesis Silver Nanowires using Polyvinyl Alcohol as A Capping Agent by Polyol Process," International Journal on Advanced Science, Engineering and Information Technology, vol. 6, pp. 365-369, 2016.
|
[19]
|
K. Kartini, A. Alviani, D. Anjarwati, A. F. Fanany, J. Sukweenadhi and C. Avanti, "Process Optimization for Green Synthesis of Silver Nanoparticles Using Indonesian Medicinal," Processes, vol. 8, p. 998, 2020.
|
[20]
|
J. Saxena, P. K. Sharma, M. M. Sharma and A. Singh, "Process optimization for green synthesis of silver nanoparticles by Sclerotinia sclerotiorum MTCC 8785 and evaluation of its antibacterial properties," Springer Plus, vol. 5, p. 861, 5, 861 (2016).
|
[21]
|
S. Satpathy, A. Patra, B. Ahirwar and M. D. Hussain, "Process optimization for green synthesis of gold nanoparticles mediated by extract of Hygrophila spinosa T. Anders and their biological applications," Physica E: Low-dimensional Systems and Nanostructures, vol. 121, p. 113830, 2020.
|
[22]
|
S. Ahmed, Saifullah, M. Ahmad, B. L. Swami and S. Ikram, "Green synthesis of silver nanoparticles using Azadirachta indica aqueous leaf extract," Journal of Radiation Research and Applied Sciences , vol. 9, pp. 1-7, 2016.
|
[23]
|
R. Kheshtzar, A. Berenjian, S. M. Taghizadeh and Y. Ghasemi, "Optimization of reaction parameters for the green synthesis of zero valent iron nanoparticles using pine tree needles," Green Processing and Synthesis, vol. 8, pp. 846-855, 2019.
|
[24]
|
A. Gholami, R. Khosravi, A. Khosravi and Z. Samadi, "Data on the optimization of the synthesis ofgreen iron nanoparticles using plants indigenousto South Khorasan," Data in Brief, vol. 21, pp. 1779-1783, 2018.
|
[25]
|
F. H. Bijarbooneh, Y. Zhao, J. H. Kim, Z. Sun, V. Malgras, S. H. Aboutalebi, Y.-U. Heo, M. Ikegami and S. X. Dou, "Aqueous Colloidal Stability Evaluated by Zeta Potential Measurement and Resultant TiO2 for Superior Photovoltaic Performance," Journal of the American Ceramic Society, vol. 96, pp. 2636-2643, 2013.
|
[26]
|
J. K. Patra and K. Baek, "Green biosynthesis of magnetic iron oxide (Fe3O4) nanoparticles using the aqueous extracts of food processing wastes under photo-catalyzed condition and investigation of their antimicrobial and antioxidant activity," Journal of Photochemistry and Photobiology B: Biology, vol. 173, pp. 291-300, 2017.
|
[27]
|
E. C. Njagi, H. Huang, L. Stafford, H. Genuino, H. M. Galindo, J. B. Collins, G. E. Hoag and S. L. Suib, "Biosynthesis of Iron and Silver Nanoparticles at Room Temperature Using Aqueous Sorghum Bran Extracts," Langmuir, vol. 27, pp. 264-271, 2011.
|
[28]
|
B. Kumar, K. Smita, L. Cumbal, A. Debut, S. Galeas and V. H. Guerrero, "Phytosynthesis and photocatalytic activity of magnetite (Fe3O4) nanoparticles using the Andean blackberry leaf," Materials Chemistry and Physics, vol. 179, pp. 310-315, 2016.
|
[29]
|
M. Takeda, T. Onishi, S. Nakakubo and S. Fujimoto, "Physical Properties of Iron-Oxide Scales on Si-Containing Steels at High Temperature," Materials Transactions, vol. 50, pp. 2242-2246, 2009.
|
[30]
|
D. Maity and D. Agrawal, "Synthesis of iron oxide nanoparticles under oxidizing environment and their stabilization in aqueous and non-aqueous media," Journal of Magnetism and Magnetic Materials, vol. 308, pp. 46-55, 2007.
|
[31]
|
D. Rosicka and J. Sembera, "Changes in the nanoparticle aggregation rate due to the additional effect of electrostatic and magnetic forces on mass transport coefficients," Nanoscale Research Letters, vol. 8, pp. 1-9, 2013.
|
[32]
|
S. S. U. Rahman, M. T. Qureshi, K. Sultana, W. Rehman, M. Y. Khan, M. H. Asif, M. Farooq and N. Sultana, "Single step growth of iron oxide nanoparticles and their use as glucose biosensor," Results in Physics, vol. 7, pp. 4451-4456, 2017.
|
[33]
|
L. Gutiérrez, L. d. l. Cueva, M. Moros, E. Mazarío, S. d. Bernardo, J. M. d. l. Fuente, M. P. Morales and G. Salas, "Aggregation effects on the magnetic properties of iron oxide colloids," Nanotechnology , vol. 30, p. 112001, 2019.
|
[34]
|
J. Jeyasundari, P. S. Praba, Y. B. A. Jacob, V. S. Vasantha and V. Shanmugaiah, "Green Synthesis and Characterization of Zero Valent Iron Nanoparticles from the Leaf Extract of Psidium Guajava Plant and Their Antibacterial Activity," Chemical Science Review and Letters, vol. 6, pp. 1244-1252, 2017.
|
[35]
|
G. Nikaeen, S. Yousefinejad, S. Rahmdel, F. Samari and S. Mahdavinia, "Central Composite Design for Optimizing the Biosynthesis of Silver Nanoparticles using Plantago major Extract and Investigating Antibacterial, Antifungal and Antioxidant Activity," Scientific Reports, vol. 10, no. 9642, 2020 .
|
[36]
|
B. Guven, S. Durakli-Velioglu and İ. H. B. S., "Rapididentification of some sweeteners and sugars by attenuated total reflectance-fourıer transform ınfrared (atr-ftır), near-ınfrared (nır) and raman spectroscopy.," Gıda, vol. 44, pp. 274-290, 2019.
|
[37]
|
P. Rajiv, A. Deepa, P. Vanathi and D. Vidhya, "Screenıng For Phytochemıcals And Ftır Analysıs Of Myrıstıca Dactyloıds Fruıt Extracts," International Journal of Pharmacy and Pharmaceutical Sciences, vol. 9, pp. 315-318, 2017.
|
[38]
|
J. Coates, "Interpretation of Infrared Spectra, A Practical Approach," Infrared Spectroscopy, 2006.
|
[39]
|
F. U. Khan, Y. Chen, N. U. Khan, A. Ahmad, K. Tahir, Z. U. Khan, A. U. Khan, S. U. Khan, M. Raza and P. Wan, "Visible light inactivation of E. coli, Cytotoxicity and ROS determination of biochemically capped gold nanoparticles," Microbial Pathogenesis, vol. 107, pp. 419-424, 2017.
|
[40]
|
M. K. Trivedi, S. Patil, H. Shettigar, K. Bairwa and S. Jana, "Effect of Biofield Treatment on Spectral Properties of Paracetamol and Piroxicam," Chemical Sciences Journal, vol. 6, p. 100098, 2015.
|
[41]
|
Y. Hou, C.Hou, Y. Fan, F. Dang and B. W. Li, "Biphasic liquid interface derived magnetite nanocrystals: synthesis, properties and growth mechanism," Materials Research Express, vol. 4, 2017.
|
[42]
|
M. Horn, K. Nienhaus and G. U. Nienhaus, "Fourier transform infrared spectroscopy study of ligand photodissociation and migration in inducible nitric oxide synthase," F1000 Research, vol. 3, 2014.
|
[43]
|
F. B. G. Camara, L. A. Costa, G. P. Fidelis, L. T. D. B. Nobre, N. Dantas-Santos, S. L. Cordeiro, L. G. A. M. S. S. P. Costa and H. A. O. Rocha, "Heterofucans from the Brown Seaweed Canistrocarpus cervicornis with Anticoagulant and Antioxidant Activities," Marine Drugs, vol. 9, pp. 124-138, 2011.
|
[44]
|
S. M. El-Sigeny and M. F. A.Taleb, "Synthesis, Characterization, and Application of Dendrimer Modified Magnetite Nanoparticles as Antimicrobial Agent," Life Science Journal , vol. 12, 2015.
|
[45]
|
S. Rada, A. Dehelean and E. Culea, "FTIR, Raman, and UV-Vis spectroscopic and DFT investigations of the structure of iron-lead-tellurate glasses," Journal of Molecular Modeling, vol. 17, pp. 2103-2111, 2011.
|
[46]
|
A. K. Das and R. V. A. Marwal, " Bio-reductive synthesis and characterization of plant protein coated magnetite nanoparticles," In Nano Hybrids, vol. 7, pp. 69-86, 2014.
|
[47]
|
W. Lu, Y. Shen, A. Xie and W. Zhang, "Green synthesis and characterization of superparamagnetic Fe3O4 nanoparticles," Journal of Magnetism and Magnetic Materials, vol. 322, pp. 1828-1833, 2010.
|
[48]
|
D. Kovář, A. Malá, J. Mlčochová, M. Kalina, Z. F. Hlaváček, Antonín, Z. Farka, P. Skládal, Z. Starčuk, R. Jiřík, O. Slabý and J. Hubálek, "Preparation and Characterisation of Highly Stable Iron Oxide Nanoparticles for Magnetic Resonance Imaging," Journal of Nanomaterials, vol. 2017, p. 7859289, 2017.
|
[49]
|
C. F. Bohren and D. R. Huffman, in Absorption and Scattering of Light by Small Particles, New York, WILEY‐VCH Verlag GmbH & Co. KGaA, 2007, pp. 1-11.
|
[50]
|
V. T. L. Huong and N. N. Thang, "Green synthesis, characterization and antibacterial activity of silver nanoparticles using Sapindus mukorossi fruit pericarp extract," Materials Today: Proceedings, vol. 42, pp. 88-93, 2021.
|
[51]
|
M. Shoaib, A. Naz, F. A. Osra, S. H. Abro, S. U. Qazi, F. A. Siddiqui, M. R. Shah and A. Z. Mirza, "Green synthesis and characterization of silver-entecavir nanoparticles with stability determination," Arabian Journal of Chemistry, vol. 14, p. 102974, 2021.
|
[52]
|
M. G. Guzman, J. Dille and S. Godet, "Synthesis and antibacterial activity of silver nanoparticles against Gram-positive and Gram negative bacteria," Nanomedicine: Nanotechnology, Biology and Medicine, vol. 8, no. 1, pp. 37 - 45, 2012.
|
[53]
|
Y. M. Mohamed, A. M. Azzam, B. H. Amin and N. A. Safwat, "Mycosynthesis of iron nanoparticles by Alternaria alternata and its antibacterial activity," African Journal of Biotechnology, vol. 14, no. 14, pp. 1234-1241, 2015.
|
[54]
|
Y. Li, D. Yang, S. Wang, C. Li, B. Xue, L. Yang, Z. Shen, M. Jin, J. Wang and Z. Qiu, "The Detailed Bactericidal Process of Ferric Oxide Nanoparticles on E. coli," Molecules, vol. 23, no. 3, p. 606, 2018.
|
[55]
|
S. Das, S. Diyali, G. Vinothini, B. Perumalsamy, G. Balakrishnan, T. Ramasamy, D. Dharumadurai and B. Biswas, "Synthesis, morphological analysis, antibacterial activity of iron oxide nanoparticles and the cytotoxic effect on lung cancer cell line," Heliyon, vol. 6, no. 9, p. e04953, 2020.
|
[56]
|
S. Kanagasubbulakshmi and K. Kadirvelu, "Green Synthesis of Iron Oxide Nanoparticles using Lagenaria Siceraria and Evaluation of its Antimicrobial Activity," Defence Life Science Journal, vol. 2, no. 4, pp. 422-427, 2017.
|
[57]
|
D. Suganya, M. R. Rajan and R. Ramesh, "Green synthesis of iron oxide nanoparticles from Leaf extract of Passiflora Foetida and its antibacterial activity," International Journal of Current Research, vol. 8, no. 11, pp. 42081-42085, 2016.
|
[58]
|
S. Amutha and S. Sridhar, "Green synthesis of magnetic iron oxide nanoparticle using leaves of Glycosmis mauritiana and their antibacterial activity against human pathogens," Journal of Innovations in Pharmaceutical and Biological Sciences (JIPBS), vol. 5, no. 2, pp. 22-26, 2018.
|