1 Lefterova, M. I., Suarez, C. J., Banaei, N. & Pinsky, B. A. Next-Generation Sequencing for Infectious Disease Diagnosis and Management: A Report of the Association for Molecular Pathology. J Mol Diagn 17, 623-634, doi:10.1016/j.jmoldx.2015.07.004 (2015).
2 Chiu, C. Y. & Miller, S. A. Clinical metagenomics. Nat. Rev. Genet. 20, 341-355, doi:10.1038/s41576-019-0113-7 (2019).
3 Goldberg, B., Sichtig, H., Geyer, C., Ledeboer, N. & Weinstock, G. M. Making the Leap from Research Laboratory to Clinic: Challenges and Opportunities for Next-Generation Sequencing in Infectious Disease Diagnostics. mBio 6, e01888-01815, doi:10.1128/mBio.01888-15 (2015).
4 Chai, J. H. et al. Cost-benefit analysis of introducing next-generation sequencing (metagenomic) pathogen testing in the setting of pyrexia of unknown origin. PLoS One 13, e0194648, doi:10.1371/journal.pone.0194648 (2018).
5 Gu, W. et al. Rapid pathogen detection by metagenomic next-generation sequencing of infected body fluids. Nat. Med., 1-10 (2020).
6 Deurenberg, R. H. et al. Application of next generation sequencing in clinical microbiology and infection prevention. J. Biotechnol. 243, 16-24, doi:10.1016/j.jbiotec.2016.12.022 (2017).
7 Zhu, N. et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N Engl J Med 382, 727-733, doi:10.1056/NEJMoa2001017 (2020).
8 Group, C.-F. R. et al. A Case of COVID-19 — Tianjin Municipality, China, November 7, 2020. China CDC Weekly 2, 884-885, doi:10.46234/ccdcw2020.241 (2020).
9 Xu, J. et al. A Reemergent Case of COVID-19 — Harbin City, Heilongjiang Province, China, April 9, 2020. China CDC Weekly 2, 460-462, doi:10.46234/ccdcw2020.127 (2020).
10 Shendure, J. et al. DNA sequencing at 40: past, present and future. Nature 550, 345-353, doi:10.1038/nature24286 (2017).
11 Goodwin, S., McPherson, J. D. & McCombie, W. R. Coming of age: ten years of next-generation sequencing technologies. Nature Reviews Genetics 17, 333 (2016).
12 patterned flow cells, <https://www.illumina.com/science/technology/next-generation-sequencing/sequencing-technology/patterned-flow-cells.html> (
13 Ramachandran, P. S. & Wilson, M. R. Metagenomics for neurological infections—expanding our imagination. Nature Reviews Neurology 16, 547-556 (2020).
14 Kamps, R. et al. Next-generation sequencing in oncology: genetic diagnosis, risk prediction and cancer classification. International journal of molecular sciences 18, 308 (2017).
15 Rabbani, B., Nakaoka, H., Akhondzadeh, S., Tekin, M. & Mahdieh, N. Next generation sequencing: implications in personalized medicine and pharmacogenomics. Molecular BioSystems 12, 1818-1830 (2016).
16 Green, E. D. et al. Strategic vision for improving human health at The Forefront of Genomics. Nature 586, 683-692, doi:10.1038/s41586-020-2817-4 (2020).
17 Dudas, G. et al. Virus genomes reveal factors that spread and sustained the Ebola epidemic. Nature 544, 309-315 (2017).
18 Stevens, E. L. et al. The Public Health Impact of a Publically Available, Environmental Database of Microbial Genomes. Front Microbiol 8, 808, doi:10.3389/fmicb.2017.00808 (2017).
19 Watson, C. How countries are using genomics to help avoid a second coronavirus wave. Nature 582, 19, doi:doi.org/10.1038/d41586-020-01573-5 (2020).
20 Zhang, Y.-Z. & Holmes, E. C. A genomic perspective on the origin and emergence of SARS-CoV-2. Cell (2020).
21 Zhou, K. et al. Use of whole-genome sequencing to trace, control and characterize the regional expansion of extended-spectrum β-lactamase producing ST15 Klebsiella pneumoniae. Scientific reports 6, 1-10 (2016).
22 Tang, X. et al. On the origin and continuing evolution of SARS-CoV-2. National Science Review (2020).
23 Novaseq specifications, <https://www.illumina.com/systems/sequencing-platforms/novaseq/specifications.html> (
24 COVID-19 Dashboard by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University (JHU), <https://coronavirus.jhu.edu/map.html> (
25 Fuller, C. W. et al. The challenges of sequencing by synthesis. Nat. Biotechnol. 27, 1013-1023 (2009).
26 Schwarze, K. et al. The complete costs of genome sequencing: a microcosting study in cancer and rare diseases from a single center in the United Kingdom. Genet. Med. 22, 85-94, doi:10.1038/s41436-019-0618-7 (2020).
27 Frohn, J. T., Knapp, H. F. & Stemmer, A. True optical resolution beyond the Rayleigh limit achieved by standing wave illumination. Proceedings of the National Academy of Sciences 97, 7232-7236, doi:10.1073/pnas.130181797 (2000).
28 nextseq 2000 specifications, <https://www.illumina.com/systems/sequencing-platforms/nextseq-1000-2000/specifications.html> (
29 Philippidis, A. Illumina Unveils New Sequencing Systems, Roche Clinical Dx Collaboration, <https://www.genengnews.com/news/illumina-unveils-new-sequencing-systems-roche-clinical-dx-collaboration/> (2020).
30 T7 features, <https://en.mgi-tech.com/Products/instruments_info/id/5> (
31 Bruus, H. Theoretical Microfluidics. (Oxford University Press, 2007).
32 LeMieux, J. MGI Delivers the $100 Genome at AGBT Conference, <https://www.genengnews.com/news/mgi-delivers-the-100-genome-at-agbt-conference/> (2020).
33 MGI. BGI Group and European Partners Launch Project to Sequence and Analyze 10 Million Cells, <https://en.mgi-tech.com/News/info/id/108> (2019).
34 BGI Participates in World's Most Comprehensive Genome Program in Abu Dhabi, <https://en.mgi-tech.com/news/113/> (2019).
35 Rao, J. (2020).
36 Drmanac, R. et al. Human genome sequencing using unchained base reads on self-assembling DNA nanoarrays. Science 327, 78-81 (2010).
37 Rosato, D. V. Extruding Plastics: A practical processing handbook. (1998).
38 Slot Die Coating: How to Get Ridiculously Thin and Accurate, <https://www.deltamodtech.com/blog/slot-die-coating-how-to-get-ridiculously-thin-and-accurate/> (
39 Sequencing Quality Scores, <https://www.illumina.com/science/technology/next-generation-sequencing/plan-experiments/quality-scores.html> (
40 Regev, A. et al. The Human Cell Atlas. Elife 6, doi:10.7554/eLife.27041 (2017).
41 Wilson, M. R. et al. Clinical Metagenomic Sequencing for Diagnosis of Meningitis and Encephalitis. N Engl J Med 380, 2327-2340, doi:10.1056/NEJMoa1803396 (2019).
42 Fehlmann, T. et al. cPAS-based sequencing on the BGISEQ-500 to explore small non-coding RNAs. Clin Epigenetics 8, 123, doi:10.1186/s13148-016-0287-1 (2016).
43 Ledergerber, C. & Dessimoz, C. Base-calling for next-generation sequencing platforms. Brief Bioinform 12, 489-497, doi:DOI: 10.1093/bib/bbq077 (2011).
44 Ewing, B. & Green, P. Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res. 8, 186-194 (1998).