This study has shown that CRP was associated with postoperative bleeding within 24 hours in patients undergoing off-pump CABG, separating from the influence of CPB and anticoagulant drugs.
CRP, a general marker of inflammation, mediates and predicts the development of vascular occlusive diseases such as myocardial infarction and stroke which thus predicts postoperative outcomes [15]. A previous study illustrated early postoperative C-reactive protein elevation and long-term postoperative major adverse cardiovascular and cerebral events in patients undergoing off-pump coronary artery bypass graft surgery [16]. Another study found that patients with high C-reactive protein were at significantly higher risk of mortality than those with low C-reactive protein without transfusion [17]. A meta-analysis illustrated that elevated baseline hs-CRP levels were independently associated with excessive ischemic stroke risk but exhibited no clear effect on hemorrhagic stroke [18].
Reports have described CRP was higher in patients with thrombotic complications than in those without. DIC, clinically relevant thrombocytopenia, and low fibrinogen are rare and have been associated with significant bleeding manifestations [19]. Further studies found that higher CRP increased fibrinogen and decreased the FVIII/VWF: Ag ratio at admission, which were significantly associated with the risk of increased oxygen requirement during follow-up [20]. The role of preoperative CRP as a biomarker of coagulation function in patients undergoing on-pump CABG has been reported by previous study. However, CPB induces coagulation system disorder more than other strategies, such as extracorporeal circulation prime. Thus, preoperative CRP concentration and coagulation parameters of patients undergoing off-pump CABG was studied rather than those of on-pump CABG to eliminate such interference.
In this study, patients accepting off-pump CABG were selected. This study further illustrated that preoperative CRP was negatively correlated with postoperative bleeding within 24h. Previous studies have shown that hsCRP can promote monocyte-endothelial cell interactions and promote the formation of plasminogen activator inhibitor-1 (PAI-1) and tissue factor (TF), which act as cell surface receptors for coagulation factor FVIIA and initiate the coagulation cascade. A correlation between CRP and APTT was found in last study [21]. However, this study showed that there was no correlation between CRP and APTT, perhaps because the study sample was small.
A previous study illustrated that tranexamic acid reduced perioperative blood transfusion in cardiac surgery (Class 1A) [22]. This study illustrated that it can reduce postoperative bleeding, which was consistent with our previous study [23].
This study also demonstrated that preoperative CRP correlated with fibrinogen. As a reactive substrate, fibrinogen is converted into fibrin under the action of thrombin and becomes the main structural protein of blood clots. Like classic indicators, such as sex, age, BMI, EF, myocardial infarction within 30 days, unstable angina pectoris, heart failure, active infective endocarditis, preoperative Cr, HGB, use of anticoagulant and antiplatelet drugs, cardiac surgery type, and cardiopulmonary bypass [24], fibrinogen is associated with postoperative bleeding. Meta-analyses have shown that there is a significant correlation between preoperative fibrinogen levels and postoperative blood loss [25]. Early administration of fibrinogen could reduce postoperative bleeding after complex pediatric cardiac surgery [26]. Fibrinogen has become another inflammatory marker following systemic inflammation markers, such as hsCRP, TNF-α and IL-6 [27]. An earlier study illustrated that assessment of the CRP or fibrinogen level in people at intermediate risk for a cardiovascular event participating in ischemic cerebrovascular events [28]. Elevated fibrinogen was independently associated with MACEs in CAD patients, especially among those with pre-DM and DM [29], which suggests that it may participate in metabolic syndrome with chronic low-grade inflammation. Studies have illustrated that CRP is associated with a 1.9% increase in γ′ fibrinogen after adjustment for potential confounders [30]. All of the above findings are consistent with our study.
Several limitations are worth noting. First, this study was conducted in a single center among ethnic Chinese patients, which may not reflect worldwide practice. Second, the surgical technique may affect the amount of postoperative bleeding. However, the surgical time and surgical procedure were consistent throughout our study.
In summary, this study illustrated less blood loss with elevated preoperative CRP concentrations in patients undergoing off-pump CABG. Preoperative CRP may be further used as a new coagulation indicator in addition to the standard laboratory coagulation index, which maybe can be used as the current supplement of bleeding scoring system.