- Chapman, C.E. and Ageranioti-Bélanger, S.A. Discharge properties of neurones in the hand area of primary somatosensory cortex in monkeys in relation to the performance of an active tactile discrimination task. Experimental brain research, 87(2), pp.319-339 (1991).
- Krupa, D.J., Wiest, M.C., Shuler, M.G., Laubach, M. and Nicolelis, M.A. Layer-specific somatosensory cortical activation during active tactile discrimination. Science, 304(5679), pp.1989-1992 (2004).
- Pais-Vieira, M., Lebedev, M.A., Wiest, M.C. and Nicolelis, M.A. Simultaneous top-down modulation of the primary somatosensory cortex and thalamic nuclei during active tactile discrimination. Journal of Neuroscience, 33(9), pp.4076-4093 (2013a).
<li>Pais-Vieira, M., Kunicki, C., Tseng, P.H., Martin, J., Lebedev, M. and Nicolelis, M.A. Cortical and thalamic contributions to response dynamics across layers of the primary somatosensory cortex during tactile discrimination. <em>Journal of neurophysiology</em>, 114(3), pp.1652-1676 (2015).</li>
<li>Kunicki, C., C Moioli, R., Pais-Vieira, M., Salles Cunha Peres, A., Morya, E. and AL Nicolelis, M. Frequency-specific coupling in fronto-parieto-occipital cortical circuits underlie active tactile discrimination. <em>Scientific reports</em>, 9(1), pp.1-14 (2019).</li>
<li>O’Doherty, J.E., Lebedev, M.A., Ifft, P.J., Zhuang, K.Z., Shokur, S., Bleuler, H. and Nicolelis, M.A. Active tactile exploration using a brain–machine–brain interface. <em>Nature</em>, 479(7372), pp.228-231 (2011).</li>
<li>Simões‐Franklin, C., Whitaker, T.A. and Newell, F.N. Active and passive touch differentially activate somatosensory cortex in texture perception. <em>Human brain mapping</em>, 32(7), pp.1067-1080 (2011).</li>
<li>Adhikari, B.M., Sathian, K., Epstein, C.M., Lamichhane, B. and Dhamala, M. Oscillatory activity in neocortical networks during tactile discrimination near the limit of spatial acuity. <em>Neuroimage</em>, 91, pp.300-310 (2014).</li>
<li>Krupa, D.J., Matell, M.S., Brisben, A.J., Oliveira, L.M. and Nicolelis, M.A. Behavioral properties of the trigeminal somatosensory system in rats performing whisker-dependent tactile discriminations. <em>Journal of Neuroscience</em>, 21(15), pp.5752-5763 (2001).</li>
<li> Wiest, M.C., Thomson, E., Pantoja, J. and Nicolelis, M.A. Changes in S1 neural responses during tactile discrimination learning. <em>Journal of neurophysiology</em>, 104(1), pp.300-312 (2010).</li>
<li> Pais-Vieira, M., Lebedev, M., Kunicki, C., Wang, J. and Nicolelis, M.A. A brain-to-brain interface for real-time sharing of sensorimotor information. <em>Scientific reports</em>, 3(1), pp.1-10 (2013b).</li>
<li> Thomson, E., Lou, J., Sylvester, K., McDonough, A., Tica, S. and Nicolelis, M.A. Basal forebrain dynamics during a tactile discrimination task. <em>Journal of neurophysiology</em>, 112(5), pp.1179-1191 (2014).</li>
<li> Perrotta, A., Pais-Vieira, C., Allahdad, M.K., Bicho, E. and Pais-Vieira, M. Differential width discrimination task for active and passive tactile discrimination in humans. <em>MethodsX</em>, 7, p.100852 (2020).</li>
<li> Vincent S.B. The function of the vibrissae in the behavior of the white rat. <em>Behav Monographs</em> 1:1–82 (1912).</li>
<li> Carvell GE and Simons D.J. Biometric analyses of vibrissal tactile discrimination in the rat. <em>J Neurosci</em> 10:2638–2648 (1990).</li>
<li> Brecht, M., Preilowski, B. and Merzenich, M.M. Functional architecture of the mystacial vibrissae. <em>Behavioural brain research</em>, <em>84</em>(1-2), pp.81-97 (1997).</li>
<li> Pfurtscheller, G., Woertz, M., Krausz, G. and Neuper, C. Distinction of different fingers by the frequency of stimulus induced beta oscillations in the human EEG. <em>Neuroscience letters</em>, <em>307</em>(1), pp.49-52 (2001).</li>
<li> Spitzer, B. and Blankenburg, F. Stimulus-dependent EEG activity reflects internal updating of tactile working memory in humans. <em>Proceedings of the National Academy of Sciences</em>, 108(20), pp.8444-8449 (2011).</li>
<li> Ishigaki, T., Ueta, K., Imai, R. and Morioka, S. EEG frequency analysis of cortical brain activities induced by effect of light touch. <em>Experimental brain research</em>, 234(6), pp.1429-1440 (2016).</li>
<li> Moungou, A., Thonnard, J.L. and Mouraux, A. EEG frequency tagging to explore the cortical activity related to the tactile exploration of natural textures. <em>Scientific reports</em>, 6(1), pp.1-9 (2016).</li>
<li> Genna, C., Oddo, C.M., Fanciullacci, C., Chisari, C., Jörntell, H., Artoni, F. and Micera, S. Spatiotemporal dynamics of the cortical responses induced by a prolonged tactile stimulation of the human fingertips. Brain topography, 30(4), pp.473-485 (2017).</li>
<li> Whitmarsh, S., Oostenveld, R., Almeida, R. and Lundqvist, D. Metacognition of attention during tactile discrimination. <em>NeuroImage</em>, 147, pp.121-129 (2017).</li>
<li> Eldeeb, S., Weber, D., Ting, J., Demir, A., Erdogmus, D. and Akcakaya, M. EEG-based trial-by-trial texture classification during active touch. <em>Scientific reports</em>, 10(1), pp.1-13 (2020).</li>
<li> Su, S., Chai, G., Sheng, X., Meng, J. and Zhu, X. Contra-lateral desynchronized alpha oscillations linearly correlate with discrimination performance of tactile acuity. <em>Journal of Neural Engineering</em>, <em>17</em>(4), p.046041 (2020).</li>
<li> Gervasoni, D., Lin, S.C., Ribeiro, S., Soares, E.S., Pantoja, J. and Nicolelis, M.A. Global forebrain dynamics predict rat behavioral states and their transitions. <em>Journal of Neuroscience</em>, 24(49), pp.11137-11147 (2004).</li>
<li> Pereira, A., Ribeiro, S., Wiest, M., Moore, L.C., Pantoja, J., Lin, S.C. and Nicolelis, M.A. Processing of tactile information by the hippocampus. <em>Proceedings of the National Academy of Sciences</em>, <em>104</em>(46), pp.18286-18291 (2007).</li>
<li> Pais-Vieira, M., Kunicki, C., Peres, A. and Sousa, N. Ceftriaxone modulates the acute corticosterone effects in local field potentials in the primary somatosensory cortex of anesthetized mice. <em>Scientific reports</em>, 9(1), pp.1-11 (2019).</li>
<li> Baumgarten, T.J., Schnitzler, A. and Lange, J. Beta oscillations define discrete perceptual cycles in the somatosensory domain. <em>Proceedings of the National Academy of Sciences</em>, <em>112</em>(39), pp.12187-12192 (2015).</li>
<li> Baumgarten, T.J., Schnitzler, A. and Lange, J. Prestimulus alpha power influences tactile temporal perceptual discrimination and confidence in decisions. <em>Cerebral Cortex</em>, <em>26</em>(3), pp.891-903 (2016).</li>
<li> Van Ede, F., De Lange, F., Jensen, O. and Maris, E. Orienting attention to an upcoming tactile event involves a spatially and temporally specific modulation of sensorimotor alpha-and beta-band oscillations. <em>Journal of Neuroscience</em>, <em>31</em>(6), pp.2016-2024 (2011).</li>
<li> von Mohr, M., Crowley, M.J., Walthall, J., Mayes, L.C., Pelphrey, K.A. and Rutherford, H.J. EEG captures affective touch: CT-optimal touch and neural oscillations. <em>Cognitive, Affective, & Behavioral Neuroscience</em>, <em>18</em>(1), pp.155-166 (2018).</li>
<li> Michail, G., Dresel, C., Witkovský, V., Stankewitz, A. and Schulz E. Neuronal oscillations in various frequency bands differ between pain and touch. <em>Frontiers in human neuroscience</em>, 10, p.182 (2016).</li>
<li> Jiao, J., Hu, X., Huang, Y., Hu, J., Hsing, C., Lai, Z., Wong, C. and Xin, J.H. Neuro-perceptive discrimination on fabric tactile stimulation by Electroencephalographic (EEG) spectra. <em>Plos one</em>, <em>15</em>(10), p.e0241378 (2020).</li>
<li> Bauer, M., Oostenveld, R., Peeters, M. and Fries, P. Tactile spatial attention enhances gamma-band activity in somatosensory cortex and reduces low-frequency activity in parieto-occipital areas. <em>Journal of Neuroscience</em>, <em>26</em>(2), pp.490-501 (2006).</li>
<li> Misselhorn, J., Schwab, B.C., Schneider, T.R. and Engel, A.K. Synchronization of sensory gamma oscillations promotes multisensory communication. <em>Eneuro</em>, <em>6</em>(5) (2019.</li>
<li> Palva, S. and Palva, J.M. New vistas for α-frequency band oscillations. <em>Trends in neurosciences</em>, <em>30</em>(4), pp.150-158 (2007).</li>
<li> Romei, V., Gross, J. and Thut, G. On the role of prestimulus alpha rhythms over occipito-parietal areas in visual input regulation: correlation or causation?. <em>Journal of Neuroscience</em>, <em>30</em>(25), pp.8692-8697 (2010).</li>
<li> Pope, A.T., Bogart, E.H. and Bartolome, D.S. Biocybernetic system evaluates indices of operator engagement in automated task. <em>Biological psychology</em>, <em>40</em>(1-2), pp.187-195 (1995).</li>
<li> Brouwer, A.M., Hogervorst, M.A., Van Erp, J.B., Heffelaar, T., Zimmerman, P.H. and Oostenveld, R. Estimating workload using EEG spectral power and ERPs in the n-back task. <em>Journal of neural engineering</em>, <em>9</em>(4), p.045008 (2012).</li>
<li> Heard, J., Harriott, C.E. and Adams, J.A. A survey of workload assessment algorithms. <em>IEEE Transactions on Human-Machine Systems</em>, <em>48</em>(5), pp.434-451 (2018).</li>
<li> Faller, J., Cummings, J., Saproo, S. and Sajda, P. Regulation of arousal via online neurofeedback improves human performance in a demanding sensory-motor task. <em>Proceedings of the National Academy of Sciences</em>, <em>116</em>(13), pp.6482-6490 (2019).</li>
<li> Jao, P.K., Chavarriaga, R., Dell’Agnola, F., Arza, A., Atienza, D. and Millán, J.D.R. EEG correlates of difficulty levels in dynamical transitions of simulated flying and mapping tasks. <em>IEEE Transactions on Human-Machine Systems</em>, 51(2), pp.99-108 (2020).</li>
<li> Bertrand, O., Perrin, F. and Pernier, J. A theoretical justification of the average reference in topographic evoked potential studies. <em>Electroencephalography and Clinical Neurophysiology/Evoked Potentials Section</em>, <em>62</em>(6), pp.462-464 (1985).</li>
<li> Benjamini, Y. and Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. <em>Journal of the Royal statistical society: series B (Methodological)</em>, <em>57</em>(1), pp.289-300 (1995).</li>