1. Bray, F., et al., Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2018. 68(6): p. 394-424.
2. Dobruch, J., et al., Gender and Bladder Cancer: A Collaborative Review of Etiology, Biology, and Outcomes. Eur Urol, 2016. 69(2): p. 300-10.
3. Cumberbatch, M.G.K., et al., Epidemiology of Bladder Cancer: A Systematic Review and Contemporary Update of Risk Factors in 2018. Eur Urol, 2018. 74(6): p. 784-795.
4. DeGeorge, K.C., H.R. Holt, and S.C. Hodges, Bladder Cancer: Diagnosis and Treatment. Am Fam Physician, 2017. 96(8): p. 507-514.
5. Lenis, A.T., et al., Bladder Cancer: A Review. Jama, 2020. 324(19): p. 1980-1991.
6. Crispen, P.L. and S. Kusmartsev, Mechanisms of immune evasion in bladder cancer. Cancer Immunol Immunother, 2020. 69(1): p. 3-14.
7. Gong, Y., et al., The role of necroptosis in cancer biology and therapy. Mol Cancer, 2019. 18(1): p. 100.
8. He, S., et al., Toll-like receptors activate programmed necrosis in macrophages through a receptor-interacting kinase-3-mediated pathway. Proc Natl Acad Sci U S A, 2011. 108(50): p. 20054-9.
9. Wang, Y., et al., PKM2 Inhibitor Shikonin Overcomes the Cisplatin Resistance in Bladder Cancer by Inducing Necroptosis. Int J Biol Sci, 2018. 14(13): p. 1883-1891.
10. Zhu, F., et al., Complex roles of necroptosis in cancer. J Zhejiang Univ Sci B, 2019. 20(5): p. 399-413.
11. Scarpitta, A., et al., Pyroptotic and Necroptotic Cell Death in the Tumor Microenvironment and Their Potential to Stimulate Anti-Tumor Immune Responses. Front Oncol, 2021. 11: p. 731598.
12. Ma, J., et al., Characterization of virus-mediated immunogenic cancer cell death and the consequences for oncolytic virus-based immunotherapy of cancer. Cell Death Dis, 2020. 11(1): p. 48.
13. Novikova, I.V., S.P. Hennelly, and K.Y. Sanbonmatsu, Tackling structures of long noncoding RNAs. Int J Mol Sci, 2013. 14(12): p. 23672-84.
14. Bhan, A., M. Soleimani, and S.S. Mandal, Long Noncoding RNA and Cancer: A New Paradigm. Cancer Res, 2017. 77(15): p. 3965-3981.
15. Zhao, Z., et al., Necroptosis-Related lncRNAs: Predicting Prognosis and the Distinction between the Cold and Hot Tumors in Gastric Cancer. J Oncol, 2021. 2021: p. 6718443.
16. Geeleher, P., N.J. Cox, and R.S. Huang, Clinical drug response can be predicted using baseline gene expression levels and in vitro drug sensitivity in cell lines. Genome Biol, 2014. 15(3): p. R47.
17. Das, S., K. Camphausen, and U. Shankavaram, Cancer-Specific Immune Prognostic Signature in Solid Tumors and Its Relation to Immune Checkpoint Therapies. Cancers (Basel), 2020. 12(9).
18. Gottesman, M.M., Mechanisms of cancer drug resistance. Annu Rev Med, 2002. 53: p. 615-27.
19. Bellmunt, J., Bladder cancer. Hematol Oncol Clin North Am, 2015. 29(2): p. xiii-xiv.
20. Cheng, R., et al., ABT‑737, a Bcl‑2 family inhibitor, has a synergistic effect with apoptosis by inducing urothelial carcinoma cell necroptosis. Mol Med Rep, 2021. 23(6).
21. Tang, R., et al., Ferroptosis, necroptosis, and pyroptosis in anticancer immunity. J Hematol Oncol, 2020. 13(1): p. 110.
22. Chen, M., et al., A New Ferroptosis-Related lncRNA Signature Predicts the Prognosis of Bladder Cancer Patients. Front Cell Dev Biol, 2021. 9: p. 699804.
23. Lia, T., et al., Development and validation of Pyroptosis‑related lncRNAs prediction model for bladder cancer. Biosci Rep, 2022.
24. Bednova, O. and J.V. Leyton, Targeted Molecular Therapeutics for Bladder Cancer-A New Option beyond the Mixed Fortunes of Immune Checkpoint Inhibitors? Int J Mol Sci, 2020. 21(19).
25. Xu, J., et al., CD274 (PD-L1) Methylation is an Independent Predictor for Bladder Cancer Patients' Survival. Cancer Invest, 2022: p. 1-6.
26. Wu, C.T., et al., Impact of CD44 expression on radiation response for bladder cancer. J Cancer, 2017. 8(7): p. 1137-1144.
27. Zhu, Y.D. and M.Y. Lu, Increased expression of TNFRSF14 indicates good prognosis and inhibits bladder cancer proliferation by promoting apoptosis. Mol Med Rep, 2018. 18(3): p. 3403-3410.
28. Liu, H., et al., A novel N6-methyladenosine (m6A)-dependent fate decision for the lncRNA THOR. Cell Death Dis, 2020. 11(8): p. 613.
29. Tao, L., et al., FTO modifies the m6A level of MALAT and promotes bladder cancer progression. Clin Transl Med, 2021. 11(2): p. e310.
30. Yu, H., et al., ALKBH5 Inhibited Cell Proliferation and Sensitized Bladder Cancer Cells to Cisplatin by m6A-CK2α-Mediated Glycolysis. Mol Ther Nucleic Acids, 2021. 23: p. 27-41.
31. Chen, X. and S. Chen, LINC00649 promotes bladder cancer malignant progression by regulating the miR‑15a‑5p/HMGA1 axis. Oncol Rep, 2021. 45(4).
32. Liu, Y., et al., LINC00649 Facilitates the Cellular Process of Bladder Cancer Cells via Signaling Axis miR-16-5p/JARID2. Urol Int, 2021: p. 1-9.