1 Thompson, J. A. New NCCN Guidelines: Recognition and Management of Immunotherapy-Related Toxicity. J Natl Compr Canc Netw 16, 594-596, doi:10.6004/jnccn.2018.0047 (2018).
2 Carlino, M. S., Larkin, J. & Long, G. V. Immune checkpoint inhibitors in melanoma. Lancet 398, 1002-1014, doi:10.1016/s0140-6736(21)01206-x (2021).
3 Tan, P. S., Aguiar, P., Jr., Haaland, B. & Lopes, G. Comparative effectiveness of immune-checkpoint inhibitors for previously treated advanced non-small cell lung cancer - A systematic review and network meta-analysis of 3024 participants. Lung Cancer 115, 84-88, doi:10.1016/j.lungcan.2017.11.017 (2018).
4 Jiang, T., Zhou, C., Hu, J. & Song, Y. Combination immune checkpoint inhibitors with platinum-based chemotherapy in advanced non-small cell lung cancer: what's known and what's next. Transl Lung Cancer Res 8, S447-s450, doi:10.21037/tlcr.2019.11.10 (2019).
5 Michot, J. M. et al. Immune-related adverse events with immune checkpoint blockade: a comprehensive review. Eur J Cancer 54, 139-148, doi:10.1016/j.ejca.2015.11.016 (2016).
6 Larkin, J. et al. Combined Nivolumab and Ipilimumab or Monotherapy in Untreated Melanoma. N Engl J Med 373, 23-34, doi:10.1056/NEJMoa1504030 (2015).
7 Postow, M. A. et al. Nivolumab and ipilimumab versus ipilimumab in untreated melanoma. N Engl J Med 372, 2006-2017, doi:10.1056/NEJMoa1414428 (2015).
8 Postow, M. A., Sidlow, R. & Hellmann, M. D. Immune-Related Adverse Events Associated with Immune Checkpoint Blockade. N Engl J Med 378, 158-168, doi:10.1056/NEJMra1703481 (2018).
9 Dougan, M. & Pietropaolo, M. Time to dissect the autoimmune etiology of cancer antibody immunotherapy. J Clin Invest 130, 51-61, doi:10.1172/jci131194 (2020).
10 Darnell, E. P., Mooradian, M. J., Baruch, E. N., Yilmaz, M. & Reynolds, K. L. Immune-Related Adverse Events (irAEs): Diagnosis, Management, and Clinical Pearls. Curr Oncol Rep 22, 39, doi:10.1007/s11912-020-0897-9 (2020).
11 Zhao, B., Zhao, H. & Zhao, J. Fatal adverse events associated with programmed cell death protein 1 or programmed cell death-ligand 1 monotherapy in cancer. Ther Adv Med Oncol 12, 1758835919895753, doi:10.1177/1758835919895753 (2020).
12 Gomatou, G., Tzilas, V., Kotteas, E., Syrigos, K. & Bouros, D. Immune Checkpoint Inhibitor-Related Pneumonitis. Respiration 99, 932-942, doi:10.1159/000509941 (2020).
13 Khunger, M. et al. Incidence of Pneumonitis With Use of Programmed Death 1 and Programmed Death-Ligand 1 Inhibitors in Non-Small Cell Lung Cancer: A Systematic Review and Meta-Analysis of Trials. Chest 152, 271-281, doi:10.1016/j.chest.2017.04.177 (2017).
14 Forde, P. M., Chaft, J. E. & Pardoll, D. M. Neoadjuvant PD-1 Blockade in Resectable Lung Cancer. N Engl J Med 379, e14, doi:10.1056/NEJMc1808251 (2018).
15 Suresh, K. et al. Pneumonitis in Non-Small Cell Lung Cancer Patients Receiving Immune Checkpoint Immunotherapy: Incidence and Risk Factors. J Thorac Oncol 13, 1930-1939, doi:10.1016/j.jtho.2018.08.2035 (2018).
16 Shibata, Y., Murakami, S. & Kato, T. Overview of checkpoint inhibitor pneumonitis: incidence and associated risk factors. Expert Opin Drug Saf 20, 537-547, doi:10.1080/14740338.2021.1898584 (2021).
17 Wang, H. et al. Clinical diagnosis and treatment of immune checkpoint inhibitor-associated pneumonitis. Thorac Cancer 11, 191-197, doi:10.1111/1759-7714.13240 (2020).
18 Larsen, B. T. et al. Clinical and Histopathologic Features of Immune Checkpoint Inhibitor-related Pneumonitis. Am J Surg Pathol 43, 1331-1340, doi:10.1097/pas.0000000000001298 (2019).
19 Puzanov, I. et al. Managing toxicities associated with immune checkpoint inhibitors: consensus recommendations from the Society for Immunotherapy of Cancer (SITC) Toxicity Management Working Group. J Immunother Cancer 5, 95, doi:10.1186/s40425-017-0300-z (2017).
20 Zhai, X. et al. The mechanism and risk factors for immune checkpoint inhibitor pneumonitis in non-small cell lung cancer patients. Cancer Biol Med 17, 599-611, doi:10.20892/j.issn.2095-3941.2020.0102 (2020).
21 Luoma, A. M. et al. Molecular Pathways of Colon Inflammation Induced by Cancer Immunotherapy. Cell 182, 655-671 e622, doi:10.1016/j.cell.2020.06.001 (2020).
22 Liao, M. et al. Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19. Nat Med 26, 842-844, doi:10.1038/s41591-020-0901-9 (2020).
23 Zhang, J. Y. et al. Single-cell landscape of immunological responses in patients with COVID-19. Nat Immunol 21, 1107-1118, doi:10.1038/s41590-020-0762-x (2020).
24 Wauters, E. et al. Discriminating mild from critical COVID-19 by innate and adaptive immune single-cell profiling of bronchoalveolar lavages. Cell Res 31, 272-290, doi:10.1038/s41422-020-00455-9 (2021).
25 Leader, A. M. et al. Single-cell analysis of human non-small cell lung cancer lesions refines tumor classification and patient stratification. Cancer Cell, doi:10.1016/j.ccell.2021.10.009 (2021).
26 Zhang, Y. et al. Single-cell analyses reveal key immune cell subsets associated with response to PD-L1 blockade in triple-negative breast cancer. Cancer Cell, doi:10.1016/j.ccell.2021.09.010 (2021).
27 Ayers, M. et al. IFN-γ-related mRNA profile predicts clinical response to PD-1 blockade. J Clin Invest 127, 2930-2940, doi:10.1172/jci91190 (2017).
28 Schulte-Schrepping, J. et al. Severe COVID-19 Is Marked by a Dysregulated Myeloid Cell Compartment. Cell 182, 1419-1440.e1423, doi:10.1016/j.cell.2020.08.001 (2020).
29 Zhang, Q. et al. Landscape and Dynamics of Single Immune Cells in Hepatocellular Carcinoma. Cell 179, 829-845.e820, doi:10.1016/j.cell.2019.10.003 (2019).
30 Groom, J. R. & Luster, A. D. CXCR3 ligands: redundant, collaborative and antagonistic functions. Immunol Cell Biol 89, 207-215, doi:10.1038/icb.2010.158 (2011).
31 Hiam-Galvez, K. J., Allen, B. M. & Spitzer, M. H. Systemic immunity in cancer. Nat Rev Cancer 21, 345-359, doi:10.1038/s41568-021-00347-z (2021).
32 Ramos-Casals, M. et al. Immune-related adverse events of checkpoint inhibitors. Nat Rev Dis Primers 6, 38, doi:10.1038/s41572-020-0160-6 (2020).
33 Xu, C. et al. Comparative safety of immune checkpoint inhibitors in cancer: systematic review and network meta-analysis. Bmj 363, k4226, doi:10.1136/bmj.k4226 (2018).
34 Suresh, K. et al. The alveolar immune cell landscape is dysregulated in checkpoint inhibitor pneumonitis. J Clin Invest 129, 4305-4315, doi:10.1172/JCI128654 (2019).
35 Suresh, K., Naidoo, J., Lin, C. T. & Danoff, S. Immune Checkpoint Immunotherapy for Non-Small Cell Lung Cancer: Benefits and Pulmonary Toxicities. Chest 154, 1416-1423, doi:10.1016/j.chest.2018.08.1048 (2018).
36 Delaunay, M. et al. Immune-checkpoint inhibitors associated with interstitial lung disease in cancer patients. Eur Respir J 50, doi:10.1183/13993003.00050-2017 (2017).
37 Reuss, J. E., Suresh, K. & Naidoo, J. Checkpoint Inhibitor Pneumonitis: Mechanisms, Characteristics, Management Strategies, and Beyond. Curr Oncol Rep 22, 56, doi:10.1007/s11912-020-00920-z (2020).
38 Bradley, B. et al. Interstitial lung disease guideline: the British Thoracic Society in collaboration with the Thoracic Society of Australia and New Zealand and the Irish Thoracic Society. Thorax 63 Suppl 5, v1-58, doi:10.1136/thx.2008.101691 (2008).
39 Rouanne, M., Arpaia, N. & Marabelle, A. CXCL13 shapes tertiary lymphoid structures and promotes response to immunotherapy in bladder cancer. Eur J Cancer 151, 245-248, doi:10.1016/j.ejca.2021.03.054 (2021).
40 Zhang, L. et al. Lineage tracking reveals dynamic relationships of T cells in colorectal cancer. Nature 564, 268-272, doi:10.1038/s41586-018-0694-x (2018).
41 Cui, P. et al. Association of immune-related pneumonitis with the efficacy of PD-1/PD-L1 inhibitors in non-small cell lung cancer. Ther Adv Med Oncol 12, 1758835920922033, doi:10.1177/1758835920922033 (2020).
42 Overacre-Delgoffe, A. E. & Vignali, D. A. A. Treg Fragility: A Prerequisite for Effective Antitumor Immunity? Cancer Immunol Res 6, 882-887, doi:10.1158/2326-6066.Cir-18-0066 (2018).
43 Mathios, D. et al. Anti-PD-1 antitumor immunity is enhanced by local and abrogated by systemic chemotherapy in GBM. Sci Transl Med 8, 370ra180, doi:10.1126/scitranslmed.aag2942 (2016).
44 Peng, Q. et al. PD-L1 on dendritic cells attenuates T cell activation and regulates response to immune checkpoint blockade. Nat Commun 11, 4835, doi:10.1038/s41467-020-18570-x (2020).
45 Hao, Q., Vadgama, J. V. & Wang, P. CCL2/CCR2 signaling in cancer pathogenesis. Cell Commun Signal 18, 82, doi:10.1186/s12964-020-00589-8 (2020).
46 Cheng, S. et al. A pan-cancer single-cell transcriptional atlas of tumor infiltrating myeloid cells. Cell 184, 792-809.e723, doi:10.1016/j.cell.2021.01.010 (2021).
47 Naidoo, J. et al. A Multidisciplinary Toxicity Team for Cancer Immunotherapy-Related Adverse Events. J Natl Compr Canc Netw 17, 712-720, doi:10.6004/jnccn.2018.7268 (2019).
48 Stuart, T. et al. Comprehensive Integration of Single-Cell Data. Cell 177, 1888-1902.e1821, doi:10.1016/j.cell.2019.05.031 (2019).
49 McGinnis, C. S., Murrow, L. M. & Gartner, Z. J. DoubletFinder: Doublet Detection in Single-Cell RNA Sequencing Data Using Artificial Nearest Neighbors. Cell Systems 8, 329-337.e324, doi:10.1016/j.cels.2019.03.003 (2019).
50 Trapnell, C. et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nature biotechnology 32, 381-386, doi:10.1038/nbt.2859 (2014).
51 Street, K. et al. Slingshot: cell lineage and pseudotime inference for single-cell transcriptomics. BMC Genomics 19, 477, doi:10.1186/s12864-018-4772-0 (2018).
52 Hänzelmann, S., Castelo, R. & Guinney, J. GSVA: gene set variation analysis for microarray and RNA-Seq data. BMC bioinformatics 14, 7, doi:10.1186/1471-2105-14-7 (2013).
53 Jin, S. et al. Inference and analysis of cell-cell communication using CellChat. Nature communications 12, 1088, doi:10.1038/s41467-021-21246-9 (2021).