1. Jolley KA, Maiden MCJ. Using multilocus sequence typing to study bacterial variation: prospects in the genomic era. Future Microbiol. 2014;9:623–30.
2. Wohl S, Schaffner SF, Sabeti PC. Genomic Analysis of Viral Outbreaks. Annu Rev Virol. 2016;3:173–95.
3. Ribeiro-Gonçalves B, Francisco AP, Vaz C, Ramirez M, Carriço JA. PHYLOViZ Online: web-based tool for visualization, phylogenetic inference, analysis and sharing of minimum spanning trees. Nucleic Acids Res. 2016;44:W246–51.
4. Zhou Z, Alikhan N-F, Sergeant MJ, Luhmann N, Vaz C, Francisco AP, et al. GrapeTree: visualization of core genomic relationships among 100,000 bacterial pathogens. Genome Res. 2018;28:1395–404.
5. Hadfield J, Megill C, Bell SM, Huddleston J, Potter B, Callender C, et al. Nextstrain: real-time tracking of pathogen evolution. Bioinformatics. 2018;34:4121–3.
6. Argimón S, Abudahab K, Goater RJE, Fedosejev A, Bhai J, Glasner C, et al. Microreact: visualizing and sharing data for genomic epidemiology and phylogeography. Microb Genom. 2016;2:e000093.
7. Sanderson T. Taxonium: a web-based tool for exploring large phylogenetic trees. bioRxiv. 2022. Available from: http://biorxiv.org/lookup/doi/10.1101/2022.06.03.494608
8. Balaban M, Moshiri N, Mai U, Jia X, Mirarab S. TreeCluster: Clustering biological sequences using phylogenetic trees. PLoS One. 2019;14:e0221068.
9. Dallman T, Ashton P, Schafer U, Jironkin A, Painset A, Shaaban S, et al. SnapperDB: a database solution for routine sequencing analysis of bacterial isolates. Bioinformatics. 2018;34:3028–9.
10. Deneke C, Uelze L, Brendebach H, Tausch SH, Malorny B. Decentralized Investigation of Bacterial Outbreaks Based on Hashed cgMLST. Front Microbiol. 2021;12:649517.
11. Ragonnet-Cronin M, Hodcroft E, Hué S, Fearnhill E, Delpech V, Brown AJL, et al. Automated analysis of phylogenetic clusters. BMC Bioinformatics. 2013;14:317.
12. Francisco AP, Vaz C, Monteiro PT, Melo-Cristino J, Ramirez M, Carriço JA. PHYLOViZ: phylogenetic inference and data visualization for sequence based typing methods. BMC Bioinformatics. 2012;13:87.
13. Lees JA, Harris SR, Tonkin-Hill G, Gladstone RA, Lo SW, Weiser JN, et al. Fast and flexible bacterial genomic epidemiology with PopPUNK. Genome Res. 2019;29:304–16.
14. Rambaut A, Holmes EC, O’Toole Á, Hill V, McCrone JT, Ruis C, et al. A dynamic nomenclature proposal for SARS-CoV-2 lineages to assist genomic epidemiology. Nat Microbiol. 2020;5:1403–7.
15. Di Pasquale A, Radomski N, Mangone I, Calistri P, Lorusso A, Cammà C. SARS-CoV-2 surveillance in Italy through phylogenomic inferences based on Hamming distances derived from pan-SNPs, -MNPs and -InDels. BMC Genomics. 2021;22:782.
16. Llarena A-K, Ribeiro-Gonçalves BF, Nuno Silva D, Halkilahti J, Machado MP, Da Silva MS, et al. INNUENDO: A cross‐sectoral platform for the integration of genomics in the surveillance of food‐borne pathogens. EFSA support publ. Wiley; 2018;15. Available from: http://doi.wiley.com/10.2903/sp.efsa.2018.EN-1498
17. Francisco AP, Bugalho M, Ramirez M, Carriço JA. Global optimal eBURST analysis of multilocus typing data using a graphic matroid approach. BMC Bioinformatics. 2009;10:152.
18. Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat Methods. Springer Science and Business Media LLC; 2020;17:261–72.
19. Carriço JA, Silva-Costa C, Melo-Cristino J, Pinto FR, de Lencastre H, Almeida JS, et al. Illustration of a common framework for relating multiple typing methods by application to macrolide-resistant Streptococcus pyogenes. J Clin Microbiol. 2006;44:2524–32.
20. Severiano A, Pinto FR, Ramirez M, Carriço JA. Adjusted Wallace coefficient as a measure of congruence between typing methods. J Clin Microbiol. 2011;49:3997–4000.
21. Barker DOR, Carriço JA, Kruczkiewicz P, Palma F, Rossi M, Taboada EN. Rapid identification of stable clusters in bacterial populations using the adjusted Wallace coefficient. bioRxiv. bioRxiv; 2018. Available from: http://biorxiv.org/lookup/doi/10.1101/299347
22. Mixão V, Brendebach H, Pinto M, Sobral D, Gomes JP, Deneke C, et al. Genome assemblies and respective cgMLST profiles of a diverse dataset comprising 1,874 Listeria monocytogenes isolates. Zenodo; 2022. Available from: https://zenodo.org/record/7116878
23. Mixão V, Brendebach H, Pinto M, Sobral D, Gomes JP, Deneke C, et al. Genome assemblies and respective wg/cgMLST profiles of a diverse dataset comprising 1,434 Salmonella enterica isolates. Zenodo; 2022. Available from: https://zenodo.org/record/7119735
24. Mixão V, Brendebach H, Pinto M, Sobral D, Gomes JP, Deneke C, et al. Genome assemblies and respective wg/cgMLST profiles of a diverse dataset comprising 1,999 Escherichia coli isolates. Zenodo; 2022. Available from: https://zenodo.org/record/7120057
25. Mixão V, Brendebach H, Pinto M, Sobral D, Gomes JP, Deneke C, et al. Genome assemblies and respective wg/cgMLST profiles of a diverse dataset comprising 3,076 Campylobacter jejuni isolates. Zenodo; 2022. Available from: https://zenodo.org/record/7120166
26. Deneke C, Brendebach H, Uelze L, Borowiak M, Malorny B, Tausch SH. Species-Specific Quality Control, Assembly and Contamination Detection in Microbial Isolate Sequences with AQUAMIS. Genes. 2021;12. Available from: http://dx.doi.org/10.3390/genes12050644
27. Silva M, Machado MP, Silva DN, Rossi M, Moran-Gilad J, Santos S, et al. chewBBACA: A complete suite for gene-by-gene schema creation and strain identification. Microb Genom. 2018;4. Available from: http://dx.doi.org/10.1099/mgen.0.000166
28. Moura A, Criscuolo A, Pouseele H, Maury MM, Leclercq A, Tarr C, et al. Whole genome-based population biology and epidemiological surveillance of Listeria monocytogenes. Nat Microbiol. 2016;2:16185.
29. Mamede R, Vila-Cerqueira P, Silva M, Carriço JA, Ramirez M. Chewie Nomenclature Server (chewie-NS): a deployable nomenclature server for easy sharing of core and whole genome MLST schemas. Nucleic Acids Res. 2021;49:D660–6.
30. Van Walle I, Björkman JT, Cormican M, Dallman T, Mossong J, Moura A, et al. Retrospective validation of whole genome sequencing-enhanced surveillance of listeriosis in Europe, 2010 to 2015. Euro Surveill. 2018;23. Available from: http://dx.doi.org/10.2807/1560-7917.ES.2018.23.33.1700798
31. Pinto M, Borges V, Isidro J, Rodrigues JC, Vieira L, Borrego MJ, et al. clustering to reveal major European whole-genome-sequencing-based genogroups in association with antimicrobial resistance. Microb Genom. 2021;7. Available from: http://dx.doi.org/10.1099/mgen.0.000481
32. Nascimento M, Sousa A, Ramirez M, Francisco AP, Carriço JA, Vaz C. PHYLOViZ 2.0: providing scalable data integration and visualization for multiple phylogenetic inference methods. Bioinformatics. 2017;33:128–9.
33. Pinto M, Borges V, Isidro J, Rodrigues JC, Vieira L, Borrego MJ, et al. Neisseria gonorrhoeae clustering to reveal major European WGS-based genogroups in association with antimicrobial resistance (cgMLST and MScgMLST schemas, allelic profile matrices and GrapeTree input file). Zenodo; 2020. Available from: https://zenodo.org/record/3946223
34. ReporTree. [last accessed 2022 Sep 28]. Available from: https://github.com/insapathogenomics/ReporTree
35. Diversidade genética do novo coronavírus SARS-CoV-2 (COVID-19) em Portugal. [last accessed 2022 Sep 28]. Available from: https://insaflu.insa.pt/covid19/
36. ReporTree Wiki. [last accessed 2022 Sep 28]. Available from: https://github.com/insapathogenomics/ReporTree/wiki
37. Nadon C, Van Walle I, Gerner-Smidt P, Campos J, Chinen I, Concepcion-Acevedo J, et al. PulseNet International: Vision for the implementation of whole genome sequencing (WGS) for global food-borne disease surveillance. Euro Surveill. 2017;22. Available from: http://dx.doi.org/10.2807/1560-7917.ES.2017.22.23.30544
38. Borges V, Pinheiro M, Pechirra P, Guiomar R, Gomes JP. INSaFLU: an automated open web-based bioinformatics suite “from-reads” for influenza whole-genome-sequencing-based surveillance. Genome Med. 2018;10:46.