1. Shi Y, Inoue H, Wu JC, Yamanaka S (2017) Induced pluripotent stem cell technology: A decade of progress. Nat Rev Drug Discov 16:115–130. https://doi.org/10.1038/nrd.2016.245
2. Aghazadeh Y, Poon F, Sarangi F, et al (2021) Microvessels support engraftment and functionality of human islets and hESC-derived pancreatic progenitors in diabetes models. Cell Stem Cell 28:1936-1949.e8. https://doi.org/10.1016/j.stem.2021.08.001
3. Mercuri ND, Cox BJ (2021) Meta-Research: A Poor Research Landscape Hinders the Progression of Knowledge and Treatment of Reproductive Diseases. bioRxiv 2021.11.16.468787. https://doi.org/10.1101/2021.11.16.468787
4. Tanaka S, Kunath T, Hadjantonakis a K, et al (1998) Promotion of trophoblast stem cell proliferation by FGF4. Science 282:2072–5
5. Kunath T, Yamanaka Y, Detmar J, et al (2014) Developmental differences in the expression of FGF receptors between human and mouse embryos. Placenta 35:1079–1088. https://doi.org/10.1016/j.placenta.2014.09.008
6. Okae H, Toh H, Sato T, et al (2017) Derivation of Human Trophoblast Stem Cells. Cell Stem Cell 22:50-63.e6. https://doi.org/10.1016/j.stem.2017.11.004
7. Sheridan MA, Fernando RC, Gardner L, et al (2020) Establishment and differentiation of long-term trophoblast organoid cultures from the human placenta. Nat Protoc 15:3441–3463. https://doi.org/10.1038/s41596-020-0381-x
8. Haider S, Meinhardt G, Saleh L, et al (2018) Self-Renewing Trophoblast Organoids Recapitulate the Developmental Program of the Early Human Placenta. Stem Cell Reports 11:. https://doi.org/10.1016/j.stemcr.2018.07.004
9. Xu R-H, Chen X, Li DS, et al (2002) BMP4 initiates human embryonic stem cell differentiation to trophoblast. Nat Biotechnol 20:1261–4. https://doi.org/10.1038/nbt761
10. Amita M, Adachi K, Alexenko a. P, et al (2013) Complete and unidirectional conversion of human embryonic stem cells to trophoblast by BMP4. Proc Natl Acad Sci 1–10. https://doi.org/10.1073/pnas.1303094110
11. Krendl C, Shaposhnikov D, Rishko V, et al (2017) GATA2/3-TFAP2A/C transcription factor network couples human pluripotent stem cell differentiation to trophectoderm with repression of pluripotency. Proc Natl Acad Sci 114:E9579–E9588. https://doi.org/10.1073/pnas.1708341114
12. Li Y, Moretto-Zita M, Soncin F, et al (2013) BMP4-directed trophoblast differentiation of human embryonic stem cells is mediated through a ΔNp63+ cytotrophoblast stem cell state. Development 140:3965–76. https://doi.org/10.1242/dev.092155
13. Bernardo ASASAS, Faial T, Gardner L, et al (2011) BRACHYURY and CDX2 Mediate BMP-Induced Differentiation of Human and Mouse Pluripotent Stem Cells into Embryonic and Extraembryonic Lineages. Cell Stem Cell 9:144–155. https://doi.org/10.1016/j.stem.2011.06.015
14. Roberts RM, Loh KM, Amita M, et al (2014) Differentiation of trophoblast cells from human embryonic stem cells: to be or not to be? Reproduction 147:D1-12. https://doi.org/10.1530/REP-14-0080
15. Zheng Y, Xue X, Shao Y, et al (2019) Controlled modelling of human epiblast and amnion development using stem cells. Nature 573:421–425. https://doi.org/10.1038/s41586-019-1535-2
16. Hayashi Y, Furue MK, Tanaka S, et al (2010) BMP4 induction of trophoblast from mouse embryonic stem cells in defined culture conditions on laminin. In Vitro Cell Dev Biol Anim 46:416–30. https://doi.org/10.1007/s11626-009-9266-6
17. Harun R, Ruban L, Matin M, et al (2006) Cytotrophoblast stem cell lines derived from human embryonic stem cells and their capacity to mimic invasive implantation events. Hum Reprod 21:1349–58. https://doi.org/10.1093/humrep/del017
18. Theunissen TW, Friedli M, He Y, et al (2016) Molecular Criteria for Defining the Naive Human Pluripotent State Resource Molecular Criteria for Defining the Naive Human Pluripotent State. 502–515
19. Cinkornpumin JK, Kwon SY, Guo Y, et al (2020) Naive Human Embryonic Stem Cells Can Give Rise to Cells with a Trophoblast-like Transcriptome and Methylome. Stem Cell Reports 15:198–213. https://doi.org/10.1016/j.stemcr.2020.06.003
20. Dong C, Beltcheva M, Gontarz P, et al (2020) Derivation of trophoblast stem cells from naïve human pluripotent stem cells. Elife 9:1–26. https://doi.org/10.7554/eLife.52504
21. Liu X, Ouyang JF, Rossello FJ, et al (2020) Reprogramming roadmap reveals route to human induced trophoblast stem cells. Nature 586:101–107. https://doi.org/10.1038/s41586-020-2734-6
22. Li R, Zhong C, Yu Y, et al (2019) Generation of Blastocyst-like Structures from Mouse Embryonic and Adult Cell Cultures. Cell 179:687-702.e18. https://doi.org/10.1016/j.cell.2019.09.029
23. Yanagida A, Spindlow D, Nichols J, et al (2021) Naive stem cell blastocyst model captures human embryo lineage segregation. Cell Stem Cell 28:1016-1022.e4. https://doi.org/10.1016/j.stem.2021.04.031
24. Yu L, Wei Y, Duan J, et al (2021) Blastocyst-like structures generated from human pluripotent stem cells
25. Kagawa H, Javali A, Khoei HH, et al (2022) Human blastoids model blastocyst development and implantation. Nature 601:600–605. https://doi.org/10.1038/s41586-021-04267-8
26. Zygmunt M, Herr F, Münstedt K, et al (2003) Angiogenesis and vasculogenesis in pregnancy. Eur J Obstet Gynecol Reprod Biol 110:10–18. https://doi.org/10.1016/S0301-2115(03)00168-4
27. Christiansen OB (2013) Reproductive immunology. Mol Immunol 55:8–15. https://doi.org/10.1016/j.molimm.2012.08.025
28. Carter AM (2012) Evolution of placental function in mammals: The molecular basis of gas and nutrient transfer, hormone secretion, and immune responses. Physiol Rev 92:1543–1576. https://doi.org/10.1152/physrev.00040.2011
29. Soncin F, Natale D, Parast MM (2014) Signaling pathways in mouse and human trophoblast differentiation: a comparative review. Cell Mol Life Sci 72:1291–1302. https://doi.org/10.1007/s00018-014-1794-x
30. Knöfler M, Pollheimer J (2013) Human placental trophoblast invasion and differentiation: a particular focus on Wnt signaling. Front Genet 4:190. https://doi.org/10.3389/fgene.2013.00190
31. Doherty KR, Cave A, Davis DB, et al (2005) Normal myoblast fusion requires myoferlin. Development 132:5565–75. https://doi.org/10.1242/dev.02155
32. Robinson JM, Ackerman WE, Behrendt NJ, Vandre DD (2009) While dysferlin and myoferlin are coexpressed in the human placenta, only dysferlin expression is responsive to trophoblast fusion in model systems. Biol Reprod 81:33–9. https://doi.org/10.1095/biolreprod.108.074591
33. Petropoulos S, Deng Q, Panula SP, et al (2016) Single-cell RNA-seq reveals lineage and X-chromosome dynamics in human preimplantation embryos. Cell 165:1012–1026
34. Lee CQEE, Gardner L, Turco M, et al (2016) What Is Trophoblast? A Combination of Criteria Define Human First-Trimester Trophoblast. Stem Cell Reports 6:257–272. https://doi.org/10.1016/j.stemcr.2016.01.006
35. Posfai E, Schell JP, Janiszewski A, et al (2021) Evaluating totipotency using criteria of increasing stringency. Nat Cell Biol 23:49–60. https://doi.org/10.1038/s41556-020-00609-2
36. Tonge PD, Corso AJ, Monetti C, et al (2014) Divergent reprogramming routes lead to alternative stem-cell states. Nature 516:192–197. https://doi.org/10.1038/nature14047
37. Maherali N, Hochedlinger K (2008) Guidelines and Techniques for the Generation of Induced Pluripotent Stem Cells. Cell Stem Cell 3:595–605. https://doi.org/10.1016/j.stem.2008.11.008
38. Hussein SMI, Elbaz J, Nagy AA (2013) Genome damage in induced pluripotent stem cells: Assessing the mechanisms and their consequences. BioEssays 35:152–162. https://doi.org/10.1002/bies.201200114
39. Yu L, Wei Y, Duan J, et al (2021) Blastocyst-like structures generated from human pluripotent stem cells. Springer US
40. Sakoff A (1993) Cell Reaction in Pseudopregnant Mice
41. Paria BC, Ma WG, Tan J, et al (2001) Cellular and molecular responses of the uterus to embryo implantation can be elicited by locally applied growth factors. Proc Natl Acad Sci U S A 98:1047–1052. https://doi.org/10.1073/pnas.98.3.1047
42. Io S, Kabata M, Iemura Y, et al (2021) Capturing human trophoblast development with naive pluripotent stem cells in vitro. Cell Stem Cell 28:1023-1039.e13. https://doi.org/10.1016/j.stem.2021.03.013
43. Guo G, Stirparo GG, Strawbridge SE, et al (2021) Human naive epiblast cells possess unrestricted lineage potential. Cell Stem Cell 28:1040-1056.e6. https://doi.org/10.1016/j.stem.2021.02.025
44. Mischler A, Karakis V, Mahinthakumar J, et al (2021) Two distinct trophectoderm lineage stem cells from human pluripotent stem cells. J Biol Chem 296:100386. https://doi.org/10.1016/j.jbc.2021.100386
45. Syrett CM, Sierra I, Berry CL, et al (2018) Sex-Specific Gene Expression Differences Are Evident in Human Embryonic Stem Cells and during in Vitro Differentiation of Human Placental Progenitor Cells. Stem Cells Dev 27:1360–1375. https://doi.org/10.1089/scd.2018.0081
46. Tan L, Lacko LA, Zhou T, et al (2019) Pre- and peri-implantation Zika virus infection impairs fetal development by targeting trophectoderm cells. Nat Commun 10:1–12. https://doi.org/10.1038/s41467-019-12063-2
47. Chhabra S, Liu L, Goh R, et al (2019) Dissecting the dynamics of signaling events in the BMP, WNT, and NODAL cascade during self-organized fate patterning in human gastruloids
48. Tsuchida N, Kojima J, Fukuda A, et al (2020) Transcriptomic features of trophoblast lineage cells derived from human induced pluripotent stem cells treated with BMP 4. Placenta 89:20–32. https://doi.org/10.1016/j.placenta.2019.10.006