[1] SANDERS, C.D.; GUIMBELLOT, J.S.; MUHLEBACH, M.S. et al. Traqueostomy in children: epidemiology and clinical outcomes. Pediatric Pulmonology. 53 (2018) 1269-1275.
[2] FRIEDBERG, SA, GRIFFITH TE, HASS GM. Histologic changes in the trachea following Tracheotomy. Annals of Otology, Rhinology and Laryngology.74 (1965) 785–798 citado por EL CHEIKH, M.R.; BARBOSA, J.M.; CAIXÊTA, J.A.S. et al. Microbiology of traqueal secretions: what to expect with children and adolescentes with traqueostomies. International Archives of Otorhinolaryngology. 22 (2018) 50-54.
[3] RODNEY, J.; OJANO-DIRAIN, C.P. ANTONELLI, P.J. et al. Effect of repeated Tracheotomy tube reprocessing on biofilm formation. Laryngoscope. 126 (2016) 996-999.
[4] RUSSELL C.J.; MACK, W.J.; SCHRAGER, S.M. et al. Care variations, length of stay and readmission in children hospitalized for bacterial Tracheotomy-associated respiratory infections. Hospital Pediatric. 7 (2017) 16-23.
[5] CHEN, Y.E.; FISCHBACH, M.A.; BELKAID, Y. Skin microbiota-host interactions. Nature. 553 (2018) 427-543.
[6] MATOS, E.C.O.; MODESTO, N.S.; COSTA, W.L.O. et al. Prevalência de agentes microbianos e sensibilidade da Pseudomonas aeruginosa. Revista Paraense de Medicin. 28 (2014) 35-43.
[7] POZZI, M.; PELLEGRINO P.; GALBIATI S. et al. Prevalence of respiratory colonisations and related antibiotic resistances among paediatric tracheostomised patients of a long-term rehabilitation centre in Italy. European Journal of Clinical Microbiology & Infectious Diseases. 34 (2015) 169-175.
[8] COSTERTON, J.W.; STEWART, P.S.; GREENBERG, E.P. Bacterial Biofilms : A Common Cause of Persistent Infections. Science (1999).
[9] LIPOVÝ, B.; BRYCHTA, P.; ŘIHOVÁ, H. et al. Effect of timing of tracheostomy on changes in bacterial colonisation of the lower respiratory tract in burned children. Burns. 2013;39(2):255–61.
[10] TENOVER, F.C. Development and spread of bacterial resistance to antimicrobial agentes: an overview. Bacterial Resistance to Antimicrobial Agents. 33 (2001) 108-115.
[11] LIMA, C.C.; BENJAMIM, S.C.C.; SANTOS, R.F.S. Mecanismo de resistência bacteriana frente aos fármacos: uma revisão. Cuidarte Enfermagem. 11 (2017) 105-113.
[12] TRABULSI LR, ALTERTHUM F. Microbiologia. 6ª ed. Rio de Janeiro: Atheneu; 2015.
[13] WORLD HEALTH ORGANIZATION. Antimicrobial Resistance. 2018.
[14] PROCOP GW. et al. Koneman Diagnóstico Microbiológico: Texto e atlas colorido. 7ed. Rio de Janeiro: Guanabara Koogan; 2018.
[15] BRASIL. Microbiologia clínica para o controle de infecção relacionada à assistência à saúde. Agência Nac Vigilância Sanitária - Anvisa. 2013.
[16] FREEMAN, D.J.; FALKINER, F.R.; KEANE, C.T. New method for detecting slime production by coagulase negative staphylococci. J Clin Pathol (1989).
[17] TENDOLKAR, P.M.; BAGHDAYAN, A.S.; GILMORE, M.S. et al. Enterococcal surface protein, Esp, enhances biofilm formation by Enterococcus faecalis. Infect Immun (2004).
[18] BAUER, A.W. et al. Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Microbiol. 40 (1966) 2413-5.
[19] Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing. 2018.
[20] MARTINEAU, F.; PICARD, F.J.; LANSAC, N. et al. Correlation between the resistance genotype determined by multiplex PCR assays and the antibiotic susceptibility patterns of Staphylococcus aureus and Staphylococcus epidermidis. Antimicrobial Agents and Chemotherapy. 44 (2000) 231-238.
[21] LIN, Q.; XU, P.; LI, J. et al. Direct bacterial loop-mediated isothermal amplification detection on the pathogenic features of the nosocomial pathogen – methicillin resistant Staphylococcus aureus strains with respiratory origins. Microbial Pathogenesis. 109 (2017) 183-188.
[22] JACOBY, G.A.; MUNOZ-PRICE, L.S. The new β-lactamases. The New England Journal of medicine. 352 (2005) 380-391.
[23] LEE, K.; YONG, D.; YUM, J.H. et al. Evaluation of Etest MBL for detection of blaIMP-1 and blaVIM-2 allele-positive clinical isolates of Pseudomonas spp. and Acinetobacter spp. J. Clin. Microbiol. 43 (2005) 942-944.
[24] WALSH, T.R.; TOLEMAN, M.A.; POIREL, L. et al. Metallo‑beta‑lactamases: The quiet before the storm? Clin Microbiol Rev. 18 (2005) 306‑325.
[25] PICOLI, S.U. Metalo-β-lactamase Pseudomonas aeruginosa. Revista Brasileira de Análises Clínicas. 40 (2008) 273-277.
[26] DOGONCHI, A.A.; GHAEMI, E.A.; ARDEBILI, A. et al. Metallo-β-tactamase-mediated resistance among clinical carbapenem-resistant Pseudomonas aeruginosa isolates in northern Iran: A potential threat to clinical therapeutics. Tzu Chi Medical Journal. 30 (2018) 90-96.
[27] EL CHEIKH, M.R.; BARBOSA, J.M.; CAIXÊTA, J.A.S. et al. Microbiology of traqueal secretions: what to expect with children and adolescentes with traqueostomies. International Archives of Otorhinolaryngology. 22 (2018) 50-54.
[28] SHARMA, G.; RAO, S.; BANSAL, A. et al. Pseudomonas aeruginosa biofilm: Potential therapeutic targets. Biologicals (2014).
[29] CAVALCANTI, V.P.; CAMARGO, L.A.; MOURA, F.S. et al. Staphylococcus aureus in tonsils of patients with recurrent tonsillitis: prevalence, susceptibility profile, and genotypic characterization. The Brazilian Journal of Infectious Diseases. 2019.
[30] FERREIRA, A.M.; MARTINS, K.B.; SILVA, V.R. et al. Correlation of phenotypic tests with the presence of the blaZ gene for detection of beta-lactamase. Brazilian Journal of Microbiology. 48 (2017) 159-166.
[31] Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing. 2019.
[32] KAUR, D.C.; CHATE, S.S. Study of antibiotic resistance pattern in methicillin resistant Staphylococcus aureus with special reference to newer antibiotic. Journal of Global Infectious Diseases. 7 (2015) 78-84.
[33] CARVALHO, M.J.; PIMENTA, F.C.; HAYASHIDA, M. et al. Prevalence of methicillin-resistant and methicillin-susceptible S. aureus in the saliva of health professionals. Clinics. 64 (2009) 295-302.
[34] SHIBABAW, A.; ABEBE, T.; MIHRET, A. Antimicrobial susceptibility pattern of nasal Staphylococcus aureus among Dessie Referrral Hospital health care workers, Dessie, Northeast Ethiopia. International Journal of Infectious Diseases. 25 (2014) 22-25.
[35] ROCHA, I.V.; FERRAZ, P.M.; FARIAS, T.G.S. et al. Resistência de bactérias isoladas em equipamentos em unidade de terapia intensive. Acta Paul Enferm. 28 (2015) 433-439.
[36] PIRES, E.J.V.C.; JÚNIOR, V.V.S.; LOPES, A.C.S. et al. Análise epidemiológica de isolados clínicos de Pseudomonas aeruginosa provenientes de hospital universitário. Revista Brasileira de Terapia Intensiva. 21 (2009) 384-390.
[37] AGHAZADEH, M.; HOJABRI, Z.; MAHDIAN, R. et al. Role of efflux pumps; MexAB-OprM and MexXY(-OprA), AmpC cephalosporinase and OprD porin in non-metallo-β-lactamase producing Pseudomonas aeruginosa isolated from xystic fibrosis and burn patients. Infectious, Genetics and Evolution. 24 (2014) 187-192. https://doi.org/10.1016/j.meegid.2014.03.018.
[38] JUAN, C.; MOYÁ, B.; PÉREZ, J.L. et al. Stepwise upregulation of the Pseudomonas aeruginosa chromosomal cephalosporinase conferring high-level β-lactam resistance involves three AmpD homologues. Antimicrobial Agents and Chemotherapy. 50 (2006) 1780-1787.
[39] SANTIAGO, G.S.; MOTTA, C.C.; BRONZATO, G.F. et al. Revisão: produção de β-lactamases do tipo AmpC em Enterobacteriaceae. Revista Brasileira de Medicina Veterinária. 38 (2016) 17-30.
[40] MAGIORAKOS, A.P.; SRINIVASAN, A.; CAREY, R.B. et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bactéria: an international expert proposal for interim standard definitions for acquired resistance. Clinical Microbiology Infection. 18 (2012) 268-281.
[41] KRALIK, P.; RICCHI, M. A basic guide to real time PCR in microbial diagnostics: Definitions, parameters, and everything. Frontiers in Microbiology. 8 (2017) 1–9.
[42] BUSH, K.; BRADFORD, P.A. β-lactams and β-lactamase inhibitors: an overview. Cold Spring Harbor Perspectives in Medicine. 2016.
[43] BELLÉS, A.; BUENO, J.; ROJO-BEZARES, B. et al. Characterisation of VIM-2-producing Pseudomonas aeruginosa isolates from lower tract respiratory infections in a Spanish hospital. European Journal of Clinical Microbiology & Infectious Diseases. 37 (2018) 1847-1856.
[44] NEVES, P.R.; MAMLZUKA, E.M.; LEVY, C.E. et al. Pseudomonas aeruginosa multirresistente: um problema endêmico no Brasil. Jornal Brasileiro de Patologia e Medicina Laboratorial. 47 (2011) 409-420.
[45] POGUE, J.M.; BONOMO, R.A.; KAYE, K.S. Ceftazidime/Avibactam, Meropenem/Vaborbactam, or both? Clinical and formulary considerations. Reviews of Anti-Infective Agents. 68 (2019) 519-524.
[46] Pérez-Losada M, Graham RJ, Coquillette M, Jafarey A, Castro-Nallar E, Aira M, et al. The temporal dynamics of the tracheal microbiome in tracheostomised patients with and without lower respiratory infections. PLoS One. 2017;12(8):1–14.
[47] HASSOUN, A.; HUFF, M.D.; WEISMAN, D. et al. Seasonal variation of respiratory pathogen colonization in asymptomatic health care professionals: A single-center, cross-sectional, 2-season observational study. Am J Infect Control. 43 (2015) 865–870.
[48] Feng Z-H, Li Q, Liu S-R, Du X-N, Wang C, Nie X-H, et al. Comparison of Composition and Diversity of Bacterial Microbiome in Human Upper and Lower Respiratory Tract. Chin Med J (Engl). 2017 May 5 [cited 2019 Feb 10];130(9):1122–4.
[49] COLBEY, C.; COX, A.J.; PYNE, D.B. et al. Upper Respiratory Symptoms, Gut Health and Mucosal Immunity in Athletes. Sports Med. 48 (2018) 65–77.
[50] TAECHOWISAN T, MUNGCHUKEATSAKUL N, PHUTDHAWONG WS. Antimicrobial Resistance Pattern of Staphylococcus aureus Strains Isolated from Clinical and Hospital Environment specimens and Their Correlation with PCR-based Approaches. Research Journal of Microbiology. 2018; 13:100-18.
[51] MOHANAM L, MENON T. Coexistence of metallo-beta-lactamase-encoding genes in Pseudomonas aeruginosa. The Indian journal of medical research. 2017 Jul;146(Suppl 1): S46.
[52] AVELINO, M.A.G. et al. First Clinical Consensus and National Recommendations on Tracheostomized Children of the Brazilian Academy of Pediatric Otorhinolaryngology (ABOPe) and Brazilian Society of Pediatrics (SBP). Brazilian Journal of Otorhinolaryngology. 83 (2017) 498–506.
[53] WANG JC, BERGERON M, ANDERSEN H et al. Feasibility of shotgun metagenomics to assess microbial ecology of pediatric tracheostomy tubes. The Laryngoscope. 2019 Feb;129(2):317-23.
[54] LAWRASON, A.; KAVANAGH, K. Pediatric tracheotomy: Are the indications changing? International Journal of Pediatric Otorhinolaryngology, v. 77, n. 6, p. 922–925, 2013.
[55] CHEUNG, N. H.; NAPOLITANO, L. M. Tracheostomy: Epidemiology, Indications, Timing, Technique, and Outcomes. Respiratory Care, v. 59, n. 6, p. 895–919, 2014.
[56] SCHWEIGER, C. et al. Traqueostomia em crianças: uma experiência de dez anos em um centro terciário do sul do Brasil. Brazilian Journal of Otorhinolaryngology, v. 83, n. 6, p. 627–632, 2017.
[57] TASCA, R. A.; CLARKE, R. W. Tracheocutaneous fistula following paediatric tracheostomy-A 14-year experience at Alder Hey Children’s Hospital. International Journal of Pediatric Otorhinolaryngology, v. 74, n. 6, p. 711–712, 2010.
[58] FRAGA, J. C.; SOUZA, J. C. K. DE; KRUEL, J. Pediatric tracheostomy. Jornal de Pediatria, 12 mar. 2009.
[59] FUNAMURA, J. L.; DURBIN-JOHNSON, B.; TOLLEFSON, T. T.; HARRISON, J.; SENDERS, C. W. Pediatric tracheotomy : indications and decannulation outcomes. Laryngoscope, v. 124, n. 8, p. 1952–1958, 2015.
[60] NASSIF, C. et al. Tracheotomy in children: A series of 57 consecutive cases. European Annals of Otorhinolaryngology, Head and Neck Diseases, v. 132, n. 6, p. 321–325, 2015.
[61] DOHERTY C, NEAL R, ENGLISH C, et al. Multidisciplinary guidelines for the management of paediatric tracheostomy emergencies. Anaesthesia. 2018.