[1] S. Pant, A. Deshmukh, G.S. Gurumurthy, N.V. Pothineni, T.E. Watts, F. Romeo, J.L. Mehta, Inflammation and atherosclerosis--revisited, J Cardiovasc Pharmacol Ther 19(2) (2014) 170-8.
[2] F. Schaftenaar, V. Frodermann, J. Kuiper, E. Lutgens, Atherosclerosis: the interplay between lipids and immune cells, Curr Opin Lipidol 27(3) (2016) 209-15.
[3] U. Forstermann, N. Xia, H. Li, Roles of Vascular Oxidative Stress and Nitric Oxide in the Pathogenesis of Atherosclerosis,Circ Res. 2017 Feb 17;120(4):713-735.
[4] J.L. Fetterman, M. Holbrook, D.G. Westbrook, J.A. Brown, K.P. Feeley, R. Breton-Romero, E.A. Linder, B.D. Berk, R.M. Weisbrod, M.E. Widlansky, N. Gokce, S.W. Ballinger, N.M. Hamburg, Mitochondrial DNA damage and vascular function in patients with diabetes mellitus and atherosclerotic cardiovascular disease, Cardiovasc Diabetol 15 (2016) 53.
[5] C. Vasquez-Trincado, I. Garcia-Carvajal, C. Pennanen, V. Parra, J.A. Hill, B.A. Rothermel, S. Lavandero, Mitochondrial dynamics, mitophagy and cardiovascular disease, J Physiol 594(3) (2016) 509-25.
[6] E.P. Yu, M.R. Bennett, Mitochondrial DNA damage and atherosclerosis, Trends Endocrinol Metab 25(9) (2014) 481-7.
[7] A.J. Kattoor, N.V.K. Pothineni, D. Palagiri, J.L. Mehta, Oxidative Stress in Atherosclerosis, Curr Atheroscler Rep 19(11) (2017) 42.
[8] R. Singh, S. Devi, R. Gollen, Role of free radical in atherosclerosis, diabetes and dyslipidaemia: larger-than-life, Diabetes Metab Res Rev 31(2) (2015) 113-26.
[9] P.D. Ray, B.W. Huang, Y. Tsuji, Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling, Cell Signal 24(5) (2012) 981-90.
[10] R. Stefanatos, A. Sanz, The role of mitochondrial ROS in the aging brain, FEBS Lett 592(5) (2018) 743-758.
[11] J. Van den Bossche, J. Baardman, N.A. Otto, S. van der Velden, A.E. Neele, S.M. van den Berg, R. Luque-Martin, H.J. Chen, M.C. Boshuizen, M. Ahmed, M.A. Hoeksema, A.F. de Vos, M.P. de Winther, Mitochondrial Dysfunction Prevents Repolarization of Inflammatory Macrophages, Cell Rep 17(3) (2016) 684-696.
[12] M. Xiao, H. Zhong, L. Xia, Y. Tao, H. Yin, Pathophysiology of mitochondrial lipid oxidation: Role of 4-hydroxynonenal (4-HNE) and other bioactive lipids in mitochondria, Free Radic Biol Med 111 (2017) 316-327.
[13] D.A. Chistiakov, T.P. Shkurat, A.A. Melnichenko, A.V. Grechko, A.N. Orekhov, The role of mitochondrial dysfunction in cardiovascular disease: a brief review, Ann Med 50(2) (2018) 121-127.
[14]Nasiri-Ansari Ν , Dimitriadis GK , Agrogiannis G , Perrea D , Kostakis ID ,Canagliflozin attenuates the progression of atherosclerosis and inflammation process in APOE knockout mice,Cardiovasc Diabetol. 2018 Jul 26;17(1):106.
[15] T. Yuan, T. Yang, H. Chen, D. Fu, Y. Hu, J. Wang, Q. Yuan, H. Yu, W. Xu, X. Xie, New insights into oxidative stress and inflammation during diabetes mellitus-accelerated atherosclerosis, Redox Biol 20 (2019) 247-260.
[16] L. Montenegro, M.N. Modica, L. Salerno, A.M. Panico, L. Crasci, G. Puglisi, G. Romeo, In Vitro Antioxidant Activity of Idebenone Derivative-Loaded Solid Lipid Nanoparticles, Molecules 22(6) (2017).
[17] S. Jaber, B.M. Polster, Idebenone and neuroprotection: antioxidant, pro-oxidant, or electron carrier?, J Bioenerg Biomembr 47(1-2) (2015) 111-8.
[18] P. Lin, J. Liu, M. Ren, K. Ji, L. Li, B. Zhang, Y. Gong, C. Yan, Idebenone protects against oxidized low density lipoprotein induced mitochondrial dysfunction in vascular endothelial cells via GSK3beta/beta-catenin signalling pathways, Biochem Biophys Res Commun 465(3) (2015) 548-55.
[19] D.B. Zorov, M. Juhaszova, S.J. Sollott, Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release, Physiol Rev 94(3) (2014) 909-50.
[20] X. Ren, L. Ren, Q. Wei, H. Shao, L. Chen, N. Liu, Advanced glycation end-products decreases expression of endothelial nitric oxide synthase through oxidative stress in human coronary artery endothelial cells, Cardiovasc Diabetol 16(1) (2017) 52.
[21] S.W. Ballinger, C. Patterson, C.A. Knight-Lozano, D.L. Burow, C.A. Conklin, Z. Hu, J. Reuf, C. Horaist, R. Lebovitz, G.C. Hunter, K. McIntyre, M.S. Runge, Mitochondrial integrity and function in atherogenesis, Circulation 106(5) (2002) 544-9.
[22] E. Yu, P.A. Calvert, J.R. Mercer, J. Harrison, L. Baker, N.L. Figg, S. Kumar, J.C. Wang, L.A. Hurst, D.R. Obaid, A. Logan, N.E. West, M.C. Clarke, A. Vidal-Puig, M.P. Murphy, M.R. Bennett, Mitochondrial DNA damage can promote atherosclerosis independently of reactive oxygen species through effects on smooth muscle cells and monocytes and correlates with higher-risk plaques in humans, Circulation 128(7) (2013) 702-12.
[23] S. Subramanian, B. Kalyanaraman, R.Q. Migrino, Mitochondrially targeted antioxidants for the treatment of cardiovascular diseases, Recent Pat Cardiovasc Drug Discov 5(1) (2010) 54-65.
[24] J. Tiefenbach, L. Magomedova, J. Liu, A.A. Reunov, R. Tsai, N.S. Eappen, R.A. Jockusch, C. Nislow, C.L. Cummins, H.M. Krause, Idebenone and coenzyme Q10 are novel PPARalpha/gamma ligands, with potential for treatment of fatty liver diseases, Dis Model Mech 11(9) (2018).
[25] A. Yan, Z. Liu, L. Song, X. Wang, Y. Zhang, N. Wu, J. Lin, Y. Liu, Z. Liu, Idebenone Alleviates Neuroinflammation and Modulates Microglial Polarization in LPS-Stimulated BV2 Cells and MPTP-Induced Parkinson's Disease Mice, Front Cell Neurosci 12 (2018) 529.
[26] C. Becker, K. Bray-French, J. Drewe, Pharmacokinetic evaluation of idebenone, Expert Opin Drug Metab Toxicol 6(11) (2010) 1437-44.
[27] S.M. Cardoso, C. Pereira, R. Oliveira, Mitochondrial function is differentially affected upon oxidative stress, Free Radic Biol Med 26(1-2) (1999) 3-13.
[28] V. Giorgio, M. Schiavone, C. Galber, M. Carini, T. Da Ros, V. Petronilli, F. Argenton, V. Carelli, M.J. Acosta Lopez, L. Salviati, M. Prato, P. Bernardi, The idebenone metabolite QS10 restores electron transfer in complex I and coenzyme Q defects, Biochim Biophys Acta Bioenerg 1859(9) (2018) 901-908.
[29] P. Yu-Wai-Man, D. Soiferman, D.G. Moore, F. Burte, A. Saada, Evaluating the therapeutic potential of idebenone and related quinone analogues in Leber hereditary optic neuropathy, Mitochondrion 36 (2017) 36-42.
[30] T. Kobayashi, K. Yoshida, M. Mitani, H. Torii, S. Tanayama, Metabolism of idebenone (CV-2619), a new cerebral metabolism improving agent: isolation and identification of metabolites in the rat and dog, J Pharmacobiodyn 8(6) (1985) 448-56.
[31] Z.R. Xu, J.Y. Li, X.W. Dong, Z.J. Tan, W.Z. Wu, Q.M. Xie, Y.M. Yang, Apple Polyphenols Decrease Atherosclerosis and Hepatic Steatosis in ApoE-/- Mice through the ROS/MAPK/NF-kappaB Pathway, Nutrients 7(8) (2015) 7085-105.
[32] N. Gueven, Idebenone for Leber's hereditary optic neuropathy, Drugs Today (Barc) 52(3) (2016) 173-81.
[33] L.M. Fadda, H. Hagar, A.M. Mohamed, H.M. Ali, Quercetin and Idebenone Ameliorate Oxidative Stress, Inflammation, DNA damage, and Apoptosis Induced by Titanium Dioxide Nanoparticles in Rat Liver, Dose Response 16(4) (2018) 1559325818812188.
[34] J. Traba, S.S. Geiger, M. Kwarteng-Siaw, K. Han, O.H. Ra, R.M. Siegel, D. Gius, M.N. Sack, Prolonged fasting suppresses mitochondrial NLRP3 inflammasome assembly and activation via SIRT3-mediated activation of superoxide dismutase 2, J Biol Chem 292(29) (2017) 12153-12164.
[35] A.E. Kane, D.A. Sinclair, Sirtuins and NAD(+) in the Development and Treatment of Metabolic and Cardiovascular Diseases, Circ Res 123(7) (2018) 868-885.
[36] B. Sosnowska, M. Mazidi, P. Penson, A. Gluba-Brzozka, J. Rysz, M. Banach, The sirtuin family members SIRT1, SIRT3 and SIRT6: Their role in vascular biology and atherogenesis, Atherosclerosis 265 (2017) 275-282.
[37] J. Wu, Z. Zeng, W. Zhang, Z. Deng, Y. Wan, Y. Zhang, S. An, Q. Huang, Z. Chen, Emerging role of SIRT3 in mitochondrial dysfunction and cardiovascular diseases, Free Radic Res 53(2) (2019) 139-149.
[38] M.L. Chen, X.H. Zhu, L. Ran, H.D. Lang, L. Yi, M.T. Mi, Trimethylamine-N-Oxide Induces Vascular Inflammation by Activating the NLRP3 Inflammasome Through the SIRT3-SOD2-mtROS Signaling Pathway, J Am Heart Assoc 6(9) (2017).
[39] I. Salvatori, C. Valle, A. Ferri, M.T. Carri, SIRT3 and mitochondrial metabolism in neurodegenerative diseases, Neurochem Int 109 (2017) 184-192.
[40] S. Karnewar, S.B. Vasamsetti, R. Gopoju, A.K. Kanugula, S.K. Ganji, S. Prabhakar, N. Rangaraj, N. Tupperwar, J.M. Kumar, S. Kotamraju, Mitochondria-targeted esculetin alleviates mitochondrial dysfunction by AMPK-mediated nitric oxide and SIRT3 regulation in endothelial cells: potential implications in atherosclerosis, Sci Rep 6 (2016) 24108.
[41] A.E. Dikalova, H.A. Itani, R.R. Nazarewicz, W.G. McMaster, C.R. Flynn, R. Uzhachenko, J.P. Fessel, J.L. Gamboa, D.G. Harrison, S.I. Dikalov, Sirt3 Impairment and SOD2 Hyperacetylation in Vascular Oxidative Stress and Hypertension, Circ Res 121(5) (2017) 564-574.
[42] M. Haneklaus, L.A. O'Neill, NLRP3 at the interface of metabolism and inflammation, Immunol Rev 265(1) (2015) 53-62.
[43] N. Song, T. Li, Regulation of NLRP3 Inflammasome by Phosphorylation, Front Immunol 9 (2018) 2305.
[44] L. Minutoli, D. Puzzolo, M. Rinaldi, N. Irrera, H. Marini, V. Arcoraci, A. Bitto, G. Crea, A. Pisani, F. Squadrito, V. Trichilo, D. Bruschetta, A. Micali, D. Altavilla, ROS-Mediated NLRP3 Inflammasome Activation in Brain, Heart, Kidney, and Testis Ischemia/Reperfusion Injury, Oxid Med Cell Longev 2016 (2016) 2183026.
[45] E.K. Jo, J.K. Kim, D.M. Shin, C. Sasakawa, Molecular mechanisms regulating NLRP3 inflammasome activation, Cell Mol Immunol 13(2) (2016) 148-59.
[46] A. Grebe, F. Hoss, E. Latz, NLRP3 Inflammasome and the IL-1 Pathway in Atherosclerosis, Circ Res 122(12) (2018) 1722-1740.
[47] Z. Hoseini, F. Sepahvand, B. Rashidi, A. Sahebkar, A. Masoudifar, H. Mirzaei, NLRP3 inflammasome: Its regulation and involvement in atherosclerosis, J Cell Physiol 233(3) (2018) 2116-2132.
[48] R. Wang, Y. Wang, N. Mu, X. Lou, W. Li, Y. Chen, D. Fan, H. Tan, Activation of NLRP3 inflammasomes contributes to hyperhomocysteinemia-aggravated inflammation and atherosclerosis in apoE-deficient mice, Lab Invest 97(8) (2017) 922-934.
[49] Neuhofer A, Wernly B, Leitner L, Sarabi A, Sommer NG, Staffler G, Zeyda M, Stulnig TM, An accelerated mouse model for atherosclerosis and adipose tissue inflammation,Cardiovasc Diabetol. 2014 Jan 17;13:23.
[50] J.W. Yu, M.S. Lee, Mitochondria and the NLRP3 inflammasome: physiological and pathological relevance, Arch Pharm Res 39(11) (2016) 1503-1518.
[51] T. Sho, J. Xu, Role and mechanism of ROS scavengers in alleviating NLRP3-mediated inflammation, Biotechnol Appl Biochem 66(1) (2019) 4-13.
[52] J. Tschopp, K. Schroder, NLRP3 inflammasome activation: The convergence of multiple signalling pathways on ROS production?, Nat Rev Immunol 10(3) (2010) 210-5.
[53] J.B. Perry, G.N. Davis, M.E. Allen, M. Makrecka-Kuka, M. Dambrova, R.W. Grange, S.R. Shaikh, D.A. Brown, Cardioprotective effects of idebenone do not involve ROS scavenging: Evidence for mitochondrial complex I bypass in ischemia/reperfusion injury, J Mol Cell Cardiol 135 (2019) 160-171.