Currently, no single, non-invasive diagnostic technique appears to be clearly superior to differentiate BA from other causes of cholestasis in infants. In this prospective study, we developed a three-variable scoring system and corresponding risk estimate (including γ-GT, clay stool, and GCDCA/CDCA) that showed the best performance for identifying BA in cholestatic infants before age 90 days.
Of all features assessed in this study, GCDCA/CDCA ratio, γ-GT, and clay stool were selected from a multiple clinical assessment and serum biomarkers by stepwise multivariate logistic regression analysis. We first developed an algorithm model for the diagnosis of BA including all three features in the derivation cohort. The AUC of such combination was 0.89 (95% CI, 0.79–0.96), which showed good discrimination of BA. Nevertheless, this model is too complex, difficult to use, and requires computer assistance. We then optimized the score system by using a quantitative scale. The final score system also showed good diagnostic ability for BA according to AUC value of 0.87 (95% CI, 0.77–0.94), similar to the original algorithm model. This final scoring system was easily calculated based on available clinical and laboratory data. Meanwhile, the scoring system using a cutoff of 15 also proved to have good diagnostic performance in the validation cohort. Furthermore, our scoring system provided estimation for infants suspected of BA into two risk categories that cover a wide range of BA diagnoses with an approximately 13-fold range of risk (from 7.4% at 0 points to 98.2% at 41 points); this could be a better reference for clinicians. In the high-risk group, scores >35 had an estimated risk of BA of >95.5%, and all patients in the validation cohort with higher scores were finally diagnosed with BA. Given the very high risk of BA in patients with scores higher than this, prompt intraoperative cholangiography should be recommended.
The prognostic value of serum IBAs as a rapid, non-invasive, and inexpensive additional diagnostic tool for differentiating BA from non-BA has been recently investigated.[18, 22] Higher GCDCA and lower CDCA levels were found in BA infants than in non-BA infants in this study as well as in other studies.[22, 23] CDCA is the primary bile acid synthesized in human pericentral hepatocytes. It is also a hydrophilic bile acid, thought to provide a hepatoprotective function. In cirrhosis patients, CDCA levels decreased, suggesting an impaired protective effect.[24] According to Chen, liver fibrosis is one the best indicators of BA.[25] We speculated that CDCA levels were significantly lower in BA infants than in non-BA infants because of the more severe fibrosis or cirrhosis due to pathological changes. Moreover, GCDCA is generated by glycine conjugation of CDCA in normal liver, which is excreted to the intestine through bile flow. Because there was obstruction of bile drainage, GCDCA in the liver was significantly elevated and reabsorbed via alternative export systems at the hepatic sinusoidal membrane, possibly causing the high levels in serum; in addition, the lack of intestinal bacterial interaction with conjugated bile acids in BA could reduce the levels of deconjugated and secondary bile acids, such as CDCA.[18] Therefore, we believe that it is logical to hypothesize that the GCDCA/CDCA ratio is an effective biomarker for increasing the diagnostic accuracy in BA patients because of the bile acid metabolism pathways.
In addition to bile acid, γ-GT and stool color have been used for the identification of BA in many previous studies.[5, 8] γ-GT levels were higher in infants with BA than in non-BA controls in our study, consistent with the results of other reports.[5, 26] γ-GT or stool color did not show good diagnostic ability in our study; however, the novel and most relevant finding of our study was that a combination of γ-GT, clay stool, and GCDCA/CDCA ratio overall improved the diagnostic performance of the tests. Besides, in our study, 29 (85.3%) BA patients had a positive HBS, which was defined as the absence of the radiotracer in the intestines for up to 24 h. However, 3 (14.7%) cases of BA showed negative HBS results, which means the radiotracer could be seen in the intestines for up to 24 h. Since BA is a progressive inflammatory cholangiopathy, and only 20% of BA patients showed complete fibroinflammatory obliteration.[27] We assumed that in those patients, the bile ducts were partially occluded by fibrosis. Presumably, the isotopes could pass through the slit-like lumen and transit into the duodenum in a few patients, which produced false-negative results, as demonstrated in this study. Also, according to a previous study, HBS has a high (98.7%) sensitivity but low (37-74%) specificity for BA diagnosis, with an overall diagnostic accuracy of 67% for BA.[28] A positive finding could also be found in severe intrahepatic cholestasis, such as CMV hepatitis, which reflects obstruction in the intrahepatic bile ducts affecting bile excretion in the intestine. HBS in the current study had a specificity of 56.3%, thus it was not selected by the multivariate logistic regression analysis, which might be due to its low specificity.
Several other models or scoring systems have been reported recently.[17, 29] El-Guindi et al. designed and validated a diagnostic score for BA with high sensitivity and specificity.[29] Nevertheless, the score included histopathological evaluation of liver biopsy. Generally, parents were unwilling to accept liver biopsy because of its cost and associated risks. By contrast, our scoring system could be easily and simply evaluated without invasive interventions. Moreover, the positive finding of our score could help guide the diagnostic assessment and could be a reference for the timing of intraoperative cholangiography.
Nevertheless, this study has some limitations. First, this study excluded some causes of infantile cholestasis, such as neonatal intrahepatic cholestasis caused by citrin deficiency, which might affect bile acid metabolism and had a different bile acid profile compared to those of other non-BA cholestasis.[12] Including metabolic diseases would affect the comparison between BA and non-BA groups. Furthermore, such diseases could be distinguished from BA by detecting amino acid profiles and genetic test. Second, bile acid detection has not been routinely used worldwide. Normal values for laboratory tests can vary from one laboratory to another. For better use of bile acid profiles, we converted our data into MoM values instead of using the actual measures. Third, because the differential of BA varies among populations of different ethnicities, the usefulness of the developed scoring system is limited to the Chinese population and validation in other ethnicities is required. Forth, though MoM is useful for evaluation when valuables depend on the instruments or reagents used, in general practice, each normal median value should be determined by testing those concentrations in normal control group. Therefore, calculating MoM is cumbersome in general clinical practices at present. However, since there remains no uniform measurement of bile acid concentration, we consider the MoM values is more reliable in current clinical practice. Also, we believe that with more application of this method in clinical practice, we could obtain a more feasible value to optimize our scoring system. Last, the rate of triangular cord sign was 8.8% in patients with biliary atresia in our deviation cohort, however, in the validation cohort, 9 of 40 (22.5%) cases of BA showed a positive find of TC sign. We assumed that the ultrasound findings depended on the experience of the radiologist, which made it inconsistent for use in the scoring system. However, we supposed that with the improvement of ultrasound technology and the experience of radiologists, the TC sign might be added to diagnosis scoring and may improve the accuracy of BA diagnosis.