There is immense importance of this research in the field of cotton fabrics manufacturing industries as well as sellers. Different scholars worked regarding this investigation at different times where literature review exposed different consequences. Some of them were parallel and some of them were widely different. Woven fabrics are subjected to a wide range of complex deformations during usage [1]. Strength is directly related to the polyester content percentage of the cotton-polyester blended woven fabrics [2].
Woven fabrics are made by the interlacement of two different sets of yarns. In these two sets, one is called the warp and another is called the weft. Woven fabrics are made with the interlacement process of warp and weft at a right angle. Generally, woven fabrics are manufactured in weaving loom, and made of yarns woven on a warp and a weft [3]. Shrinkage ability is a very important factor for the clothing industry and very strict claims are made for this property. No more than 3% shrinkage in the cross and lengthways directions of the fabric is allowable. A matter of primary interest for fabric shrinking capacity is fabric structure, which is characterized by seven main parameters: fabric warp and weft raw material, the linear density of warp and weft yarns, densities of warp, and weft, and fabric weave. All these factors together determine the fabric's formation, parameters, and characteristics [4].
Woven fabrics are mainly three types such as plain, twill, and satin. Plain weave fabrics are mainly manufactured by the two sets of yarns with the 1 up and 1 down process at right angles. The higher the surface openness, the lower or more negligible the influences of other factors on UPF values. The colors of a fabric plays an important role in UV ray protection in the samples with a sufficiently closed surface and especially black and blue colors exhibit high absorbance in the UV wavelength range and provide excellent protection when the samples are highly closed (compact). Other chromatic colors, such as red, yellow and green also offer adequate (very good) protection against UV radiation. [5]. In this weave, the warp and weft yarns stay at right angles and create a durable fabric. Every weft yarn passes the warp yarn by moving above one and then below the following, and so on. The subsequent weft yarn goes below the warp yarn that its belonging passes over, and vice versa [6].
In woven fabrics, there are mainly two cover factor values like warp cover factor and weft cover factor. Cover factor hangs on some issues like yarn count, thickness, density, and shape [7]. These yarns run parallel to their corresponding yarns. Muslin is a type of fabric that is made up of 100% cotton yarns with the interlacement portion of one up and one down. The yarn count of muslin clothes is very fine ranges from 200 Ne to 300 Ne [8]. With the higher interlacement ratio, plain weave fabrics showed the maximum cover factor values. Stiffness or compactness was less in the twill and satin weave compared to plain woven fabrics. More thread counts like EPI and PPI showed more cover factor values. Extra crimp from plain weave fabrics due to more interlacement ratio has a greater advantage for more weight (g/m2) values [9]. It can simply make a relationship between outward evenness and abrasion. Consequently, the higher the exterior zone of reproduction yarns, the greater would be the clothes balance and, hence, the higher would be the frictional confrontation. [10]. This strength of woven cloth is one of the most significant characteristics which make it bigger in many applications as related to nonwoven and knitted clothes.
The property of shrinkage is expressed as the change of measurement through the length and width of the clothes after washing, either in hot water or in cold water [11]. When cotton fabrics are submerged in water, they started to shrink in both warp and weft ways to neutralize pressures obtained from the processing finishing department. Shrinkage values are both types like positive and negative. Positive shrinkage refers that a fabric that will increase in length after washing. Wherein negative shrinkage fabrics started to shrink or reduce their length after washing [12].
The Cover factor is a technical dimension of the proportion area of the cloth enclosed by the yarns. The Cover factor is dependent on the construction of the clothes and the type of yarns used. Plain weave fabrics expressed the best cover factor values compared to twill and satin weave fabrics [13]. Air permeability is a property that measures how effortlessly air passes through the clothes. It specifies the breathability of fabrics. The more the air-permeability is, the better the breathability is. Air-permeable clothes have a habit to have moderately high moisture vapor diffusion capacities [14]. Canvas fabric expressed a higher value of weight and strength compared to poplin and voile, on the other hand, voile fabric expressed a better value of shrinkage compared to the other two fabrics. [15].