[1] Webb PM, Jordan SJ. Epidemiology of epithelial ovarian cancer, Best Pract Res Clin Obstet Gynaecol. 2017; 41:3-14. doi: 10.1016/j.bpobgyn.2016.08.006
[2] Scaletta G, Plotti F, Luvero D, Capriglione S, Montera R, Miranda A, Lopez S, Terranova C, Nardone C, Angioli R. The role of novel biomarker HE4 in the diagnosis, prognosis and follow-up of ovarian cancer: a systematic review. Expert Rev Anticancer Ther. 2017; 17:827-839. doi: 10.1080/14737140.2017.1360138
[3] Zhang L, Chen Y, Wang K. Comparison of CA125, HE4, and ROMA index for ovarian cancer diagnosis. Curr Probl Cancer. 2019; 43:135-144. doi: 10.1016/j.currproblcancer.2018.06.001
[4] Dochez V, Caillon H, Vaucel E, Dimet J, Winer N, Ducarme G. Biomarkers and algorithms for diagnosis of ovarian cancer: CA125, HE4, RMI and ROMA, a review. J Ovarian Res. 2019; 12:28. doi: 10.1186/s13048-019-0503-7
[5] Yan LM, Lin B, Zhu LC, Hao YY, Qi Y, Wang CZ, Gao S, Liu SC, Zhang SL, Iwamori M. Enhancement of the adhesive and spreading potentials of ovarian carcinoma RMG-1 cells due to increased expression of integrin alpha5beta1 with the Lewis Y-structure on transfection of the alpha1,2-fucosyltransferase gene. Biochimie. 2010;92:852-857. doi: 10.1016/j.biochi.2010.02.012
[6] Li F, Lin B, Hao Y, Li Y, Liu J, Cong J, Zhu L, Liu Q, Zhang S. Lewis Y promotes growth and adhesion of ovarian carcinoma-derived RMG-I cells by upregulating growth factors. Int J Mol Sci. 2010;11:3748-3759. doi: 10.3390/ijms11103748
[7] Liu J, Lin B, Hao Y, Qi Y, Zhu L, Li F, Liu D, Cong J, Zhang S, Iwamori M. Lewis y antigen promotes the proliferation of ovarian carcinoma-derived RMG-I cells through the PI3K/Akt signaling pathway. J Exp Clin Cancer Res. 2009; 28:154. doi: 10.1186/1756-9966-28-154
[8] Zhuang H, Gao J, Hu Z, Liu J, Liu D, Lin B. Co-expression of Lewis y antigen with human epididymis protein 4 in ovarian epithelial carcinoma. PLoS One. 2013; 8:e68994. doi: 10.1371/journal.pone.0068994
[9] Morgan RJ, Alvarez RD, Armstrong DK, Burger RA, Chen LM, Copeland L, Crispens MA, Gershenson DM, Gray HJ, Hakam A, et al. Ovarian cancer, version 2.2013, J Natl Compr Canc Netw. 2013; 11:1199-1209. doi: 10.6004/jnccn.2013.0142
[10] Zhu LC, Gao J, Hu ZH, Schwab CL, Zhuang HY, Tan MZ, Yan LM, Liu JJ, Zhang DY, Lin B. Membranous expressions of Lewis y and CAM-DR-related markers are independent factors of chemotherapy resistance and poor prognosis in epithelial ovarian cancer. Am J Cancer Res. 2015; 5:830-843. PMID:25973320.
[11] Carithers LJ, Ardlie K, Barcus M, Branton PA, Britton A, Buia SA, Compton CC, DeLuca DS, Peter-Demchok J, Gelfand ET, et al. A Novel Approach to High-Quality Postmortem Tissue Procurement: The GTEx Project. Biopreserv Biobank. 2015; 13:311-319. doi: 10.1089/bio.2015.0032
[12] Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin A, Kim S, Wilson CJ, Lehar J, Kryukov GV, Sonkin D, et al. Addendum: The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature. 2019; 565:E5-E6. doi: 10.1038/s41586-018-0722-x
[13] Gao S, Zhu L, Feng H, Hu Z, Jin S, Song Z, Liu D, Liu J, Hao Y, X. Li, et al. Gene expression profile analysis in response to alpha1,2-fucosyl transferase (FUT1) gene transfection in epithelial ovarian carcinoma cells. Tumour Biol. 2016; 37:12251-12262. doi: 10.1007/s13277-016-5080-4
[14] Zhu L, Guo Q, Jin S, Feng H, Zhuang H, Liu C, Tan M, Liu J, Li X, Lin B. Analysis of the gene expression profile in response to human epididymis protein 4 in epithelial ovarian cancer cells. Oncol Rep. 2016; 36:1592-1604. doi: 10.3892/or.2016.4926
[15] Zhu L, Zhuang H, Wang H, Tan M, Schwab CL, Deng L, Gao J, Hao Y, Li X, Gao S, et al. Overexpression of HE4 (human epididymis protein 4) enhances proliferation, invasion and metastasis of ovarian cancer. Oncotarget. 2016; 7:729-744. doi: 10.18632/oncotarget.6327
[16] Zhou Y, Zhou B, Pache L, Chang M,Khodabakhshi AH, Tanaseichuk O, Benner C, Chanda SK. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun. 2019; 10:1523. doi: 10.1038/s41467-019-09234-6
[17] Chin CH, Chen SH, Wu HH, Ho CW, Ko MT, Lin CY. cytoHubba: identifying hub objects and sub-networks from complex interactome. BMC Syst Biol. 2014; 8 Suppl 4:S11. doi: 10.1186/1752-0509-8-S4-S11
[18] Brenk A, Bodzek P, Balis M, Barbachowska A, Janosz I, Olejek A. Usefulness of HE4 protein in differentiation of pelvic masses in woman. Prz Menopauzalny. 2019; 18:27-32. doi: 10.5114/pm.2019.84154
[19] Wang H, Zhu L, Gao J, Hu Z, Lin B. Promotive role of recombinant HE4 protein in proliferation and carboplatin resistance in ovarian cancer cells. Oncol Rep. 2015; 33:403-412. doi: 10.3892/or.2014.3549
[20] Zhuang H, Tan M, Liu J, Hu Z, Liu D, Gao J, Zhu L, Lin B. Human epididymis protein 4 in association with Annexin II promotes invasion and metastasis of ovarian cancer cells. Mol Cancer. 2014; 13:243. doi: 10.1186/1476-4598-13-243
[21] Wang J, Deng L, Zhuang H, Liu J, Liu D, Li X, Jin S, Zhu L, Wang H, Lin B. Interaction of HE4 and ANXA2 exists in various malignant cells-HE4-ANXA2-MMP2 protein complex promotes cell migration. Cancer Cell Int. 2019; 19:161. doi: 10.1186/s12935-019-0864-4
[22] Wang A, Jin C, Tian X, Wang Y,Li H. Knockdown of HE4 suppresses aggressive cell growth and malignant progression of ovarian cancer by inhibiting the JAK/STAT3 pathway. Biol Open. 2019; 8. doi: 10.1242/bio.043570
[23] Liu D, Kong D, Li J, Gao L, Wu D, Liu Y, Yang W, Zhang L, Zhu J, Jin X. HE4 level in ascites may assess the ovarian cancer chemotherapeutic effect. J Ovarian Res. 2018; 11:47. doi: 10.1186/s13048-018-0402-3
[24] Lee S, Choi S, Lee Y, Chung D, Hong S, Park N. Role of human epididymis protein 4 in chemoresistance and prognosis of epithelial ovarian cancer. J Obstet Gynaecol Res. 2017; 43:220-227. doi: 10.1111/jog.13181
[25] Karlsen MA, Hogdall C, Nedergaard L, Prahm KP, Karlsen NM, Ekmann AW, Schnack TH, Poulsen T, Christensen IJ, Hogdall E. HE4 as a predictor of adjuvant chemotherapy resistance and survival in patients with epithelial ovarian cancer. APMIS. 2016; 124:1038-1045. doi: 10.1111/apm.12625
[26] Moore RG, Hill EK, Horan T, Yano N, Kim K, MacLaughlan S, Lambert-Messerlian G, Tseng YD, Padbury JF, Miller MC, et al. HE4 (WFDC2) gene overexpression promotes ovarian tumor growth. Sci Rep. 2014; 4:3574. doi: 10.1038/srep03574
[27] Nonaka M, Ma BY, Murai R, Nakamura N, Baba M, Kawasaki N, Hodohara K, Asano S, Kawasaki T. Glycosylation-dependent interactions of C-type lectin DC-SIGN with colorectal tumor-associated Lewis glycans impair the function and differentiation of monocyte-derived dendritic cells. J Immunol. 2008; 180:3347-3356. doi: 10.4049/jimmunol.180.5.3347
[28] Tan M, Zhu L, Zhuang H, Hao Y, Gao S, Liu S, Liu Q, Liu D, Liu J, Lin B. Lewis Y antigen modified CD47 is an independent risk factor for poor prognosis and promotes early ovarian cancer metastasis. Am J Cancer Res. 2015; 5:2777-2787. doi:
[29] Gao J, Hu Z, Liu J, Liu D, Wang Y, Cai M, Zhang D, Tan M, Lin B. Expression of CD147 and Lewis y antigen in ovarian cancer and their relationship to drug resistance. Med Oncol. 2014; 31:920. doi: 10.1007/s12032-014-0920-9
[30] Zhuang H, Tan M, Liu J, Li X, Gao J, Hu Z, Deng L, Zhu L, Lin B. The expression of annexin II and Lewis y antigen in ovarian epithelial tumors and the correlation between them. Tumour Biol. 2015; 36:2343-2349. doi: 10.1007/s13277-014-2841-9
[31] Cai M, Jin S, Deng L, Zhu L, Hu Z, Liu D, Liu J, Tan M, Gao J, Wang H, et al. Lewis y antigen promotes p27 degradation by regulating ubiquitin-proteasome activity. Oncotarget. 2017; 8:110064-110076. doi: 10.18632/oncotarget.22617
[32] Burotto M, Chiou VL, Lee JM, Kohn EC. The MAPK pathway across different malignancies: a new perspective. Cancer. 2014; 120:3446-3456. doi: 10.1002/cncr.28864
[33] Ribeiro JR, Schorl C, Yano N, Romano N, Kim KK, Singh RK,Moore RG. HE4 promotes collateral resistance to cisplatin and paclitaxel in ovarian cancer cells. J Ovarian Res. 2016; 9:28. doi: 10.1186/s13048-016-0240-0
[34] Hao Y, Zhu L,Yan L, Liu J, Liu D, Gao N, Tan M, Gao S, Lin B. c-Fos mediates alpha1, 2-fucosyltransferase 1 and Lewis y expression in response to TGF-beta1 in ovarian cancer. Oncol Rep. 2017; 38:3355-3366. doi: 10.3892/or.2017.6052
[35] Shan X, Aziz F, Tian LL, Wang XQ, Yan Q, Liu JW. Ginsenoside Rg3-induced EGFR/MAPK pathway deactivation inhibits melanoma cell proliferation by decreasing FUT4/LeY expression. Int J Oncol. 2015; 46:1667-1676. doi: 10.3892/ijo.2015.2886
[36] Hybel TE, Dietrichs D, Sahana J, Corydon TJ, Nassef MZ, Wehland M, Kruger M, Magnusson NE, Bauer J, Utpatel K, et al. Simulated Microgravity Influences VEGF, MAPK, and PAM Signaling in Prostate Cancer Cells. Int J Mol Sci. 2020; 21. doi: 10.3390/ijms21041263
[37] Wang S, Xiao Z, Hong Z, Jiao H, Zhu S, Zhao Y, Bi J, Qiu J, Zhang D, Yan J, et al. FOXF1 promotes angiogenesis and accelerates bevacizumab resistance in colorectal cancer by transcriptionally activating VEGFA. Cancer Lett. 2018; 439:78-90. doi: 10.1016/j.canlet.2018.09.026
[38] Guo J, Chen M, Ai G, Mao W, Li H, Zhou J. Hsa_circ_0023404 enhances cervical cancer metastasis and chemoresistance through VEGFA and autophagy signaling by sponging miR-5047. Biomed Pharmacother. 2019; 115:108957. doi: 10.1016/j.biopha.2019.108957
[39] Cairns J, Ingle JN, Kalari KR, Shepherd LE, Kubo M, Goetz MP, Weinshilboum RM, Wang L. The lncRNA MIR2052HG regulates ERalpha levels and aromatase inhibitor resistance through LMTK3 by recruiting EGR1. Breast Cancer Res. 2019; 21:47. doi: 10.1186/s13058-019-1130-3
[40] Sun M, Nie FQ, Zang C, Wang Y, Hou J, Wei C, Li W, He X, Lu KH. The Pseudogene DUXAP8 Promotes Non-small-cell Lung Cancer Cell Proliferation and Invasion by Epigenetically Silencing EGR1 and RHOB. Mol Ther. 2017; 25:739-751. doi: 10.1016/j.ymthe.2016.12.018
[41] Stamatakis K, Jimenez-Martinez M, Jimenez-Segovia A, Chico-Calero I, Conde E, Galan-Martinez J, Ruiz J, Pascual A, Barrocal B, Lopez-Perez R, et al. Prostaglandins induce early growth response 1 transcription factor mediated microsomal prostaglandin E2 synthase up-regulation for colorectal cancer progression. Oncotarget. 2015; 6:39941-39959. doi: 10.18632/oncotarget.5402
[42] Parra E, Gutierrez L, Ferreira J. Association of increased levels of TGF-beta1 and p14ARF in prostate carcinoma cell lines overexpressing Egr-1. Oncol Rep. 2014; 32:2191-2198. doi: 10.3892/or.2014.3472
[43] Shajahan-Haq AN, Boca SM, Jin L, Bhuvaneshwar K, Gusev Y, Cheema AK, Demas DD, Raghavan KS, Michalek R, Madhavan S, et al. EGR1 regulates cellular metabolism and survival in endocrine resistant breast cancer. Oncotarget. 2017; 8:96865-96884. doi: 10.18632/oncotarget.18292
[44] Tang T, Zhu Q, Li X, Zhu G, Deng S, Wang Y, Ni L, Chen X, Zhang Y, Xia T, et al. Protease Nexin I is a feedback regulator of EGF/PKC/MAPK/EGR1 signaling in breast cancer cells metastasis and stemness. Cell Death Dis. 2019; 10:649. doi: 10.1038/s41419-019-1882-9
[45] Wu Y, Li D, Wang Y, Liu X, Zhang Y, Qu W, Chen K, Francisco NM, Feng L, Huang X, et al. Beta-Defensin 2 and 3 Promote Bacterial Clearance of Pseudomonas aeruginosa by Inhibiting Macrophage Autophagy through Downregulation of Early Growth Response Gene-1 and c-FOS. Front Immunol. 2018; 9:211. doi: 10.3389/fimmu.2018.00211
[46] Parmakhtiar B, Burger RA, Kim JH, Fruehauf JP. HIF Inactivation of p53 in Ovarian Cancer Can Be Reversed by Topotecan, Restoring Cisplatin and Paclitaxel Sensitivity. Mol Cancer Res. 2019; 17:1675-1686. doi: 10.1158/1541-7786.MCR-18-1109
[47] Zhang X, Qi Z, Yin H, Yang G. Interaction between p53 and Ras signaling controls cisplatin resistance via HDAC4- and HIF-1alpha-mediated regulation of apoptosis and autophagy. Theranostics. 2019; 9:1096-1114. doi: 10.7150/thno.29673
[48] Zhang W, Yuan W, Song J, Wang S, Gu X. LncRNA CPS1-IT1 suppresses EMT and metastasis of colorectal cancer by inhibiting hypoxia-induced autophagy through inactivation of HIF-1alpha. Biochimie. 2018; 144:21-27. doi: 10.1016/j.biochi.2017.10.002
[49] Ko CJ, Lan SW, Lu YC., Cheng TS, Lai P, Tsai C., Hsu TW, Lin HY, Shyu HY, Wu SR, et al. Inhibition of cyclooxygenase-2-mediated matriptase activation contributes to the suppression of prostate cancer cell motility and metastasis. Oncogene. 2017; 36:4597-4609. doi: 10.1038/onc.2017.82
[50] Xu H, Lin F, Wang Z, Yang L, Meng J, Ou Z, Shao Z, Di G, Yang G. CXCR2 promotes breast cancer metastasis and chemoresistance via suppression of AKT1 and activation of COX2. Cancer Lett. 2018; 412:69-80. doi: 10.1016/j.canlet.2017.09.030
[51] Ooki A, Pena M, Marchionni L, Dinalankara W, Begum A, Hahn NM, VandenBussche CJ, Rasheed ZA, Mao S, Netto GJ, et al. YAP1 and COX2 Coordinately Regulate Urothelial Cancer Stem-like Cells. Cancer Res. 2018; 78:168-181. doi: 10.1158/0008-5472.CAN-17-0836
[52] Yu JL, Gao X. MicroRNA 1301 inhibits cisplatin resistance in human ovarian cancer cells by regulating EMT and autophagy. Eur Rev Med Pharmacol Sci. 2020; 24:1688-1696. doi: 10.26355/eurrev_202002_20343
[53] Liang F, Ren C, Wang J, Wang S, Yang L, Han X, Chen Y, Tong G, Yang G. The crosstalk between STAT3 and p53/RAS signaling controls cancer cell metastasis and cisplatin resistance via the Slug/MAPK/PI3K/AKT-mediated regulation of EMT and autophagy. Oncogenesis. 2019; 8:59. doi: 10.1038/s41389-019-0165-8
[54] Patel NH, Xu J, Saleh T, Wu Y, Lima S, Gewirtz DA. Influence of nonprotective autophagy and the autophagic switch on sensitivity to cisplatin in non-small cell lung cancer cells. Biochem Pharmacol. 2020; 175:113896. doi: 10.1016/j.bcp.2020.113896
[55] Lin TY, Chan HH, Chen SH, Sarvagalla S, Chen PS, Coumar MS, Cheng SM, Chang YC, Lin CH, Leung E, et al. BIRC5/Survivin is a novel ATG12-ATG5 conjugate interactor and an autophagy-induced DNA damage suppressor in human cancer and mouse embryonic fibroblast cells. Autophagy. 2019:1-18. doi: 10.1080/15548627.2019.1671643
[56] New J, Thomas SM. Autophagy-dependent secretion: mechanism, factors secreted, and disease implications. Autophagy. 2019; 15:1682-1693. doi: 10.1080/15548627.2019.1596479