1. Parsaee, F. et al. Radical philicity and its role in selective organic transformations. Nat. Rev. Chem. 5, 486–499 (2021).
2. Kato, K. & Osuka, A. Platforms for stable carbon-centered radicals. Angew. Chem. Int. Ed. 58, 8978–8986 (2019).
3. Thorarinsdottir, A. E. & Harris, T. D. Metal–organic framework magnets. Chem. Rev. 120, 8716–8789 (2020).
4. Chen, Z. X., Li, Y. & Huang, F. Persistent and stable organic radicals: Design, synthesis, and applications. Chem 7, 288–332 (2021).
5. Yuan, D., Liu, W. & Zhu, X. Design and applications of single-component radical conductors. Chem 7, 333–357 (2021).
6. Hansen, K. A. & Blinco, J. P. Nitroxide radical polymers – a versatile material class for high-tech applications. Polym. Chem. 9, 1479–1516 (2018).
7. Peng, Q., Obolda, A., Zhang, M. & Li, F. Organic light-emitting diodes using a neutral π radical as emitter: The emission from a doublet. Angew. Chem. Int. Ed. 54, 7091–7095 (2015).
8. Ai, X. et al. Efficient radical-based light-emitting diodes with doublet emission. Nature 563, 536–540 (2018).
9. Cui, Z., Abdurahman, A., Ai, X. & Li, F. Stable luminescent radicals and radical-based LEDs with doublet emission. CCS Chem. 2, 1129–1145 (2020).
10. Ren, A. et al. Emerging light-emitting diodes for next-generation data communications. Nat. Electron. 4, 559–572 (2021).
11. Gamero, V. et al. [4-(N-Carbazolyl)-2,6-dichlorophenyl]bis(2,4,6-trichlorophenyl)methyl radical an efficient red light-emitting paramagnetic molecule. Tetrahedron Lett. 47, 2305–2309 (2006).
12. Hattori, Y., Kusamoto, T. & Nishihara, H. Luminescence, stability, and proton response of an open-shell (3,5-dichloro-4-pyridyl)bis(2,4,6-trichlorophenyl)methyl radical. Angew. Chem. Int. Ed. 53, 11845–11848 (2014).
13. Guo, H. et al. High stability and luminescence efficiency in donor-acceptor neutral radicals not following the Aufbau principle. Nat. Mater. 18, 977–984 (2019).
14. Abdurahman, A. et al. Understanding the luminescent nature of organic radicals for efficient doublet emitters and pure-red light-emitting diodes. Nat. Mater. 19, 1224–1229 (2020).
15. Kusamoto, T. & Kimura, S. Photostable luminescent triarylmethyl radicals and their metal complexes: Photofunctions unique to open-shell electronic states. Chem. Lett. 50, 1445–1459 (2021).
16. Burrezo, P. M. et al. Organic free radicals as circularly polarized luminescence emitters. Angew. Chem. Int. Ed. 58, 16282–16288 (2019).
17. Liu, C. H., Hamzehpoor, E., Sakai-Otsuka, Y., Jadhav, T. & Perepichka, D. F. A pure-red doublet emission with 90% quantum yield: Stable, colorless, iodinated triphenylmethane solid. Angew. Chem. Int. Ed. 51, 23030–23034 (2020).
18. Cho, E., Coropceanu, V. & Brédas, J. L. Organic neutral radical emitters: Impact of chemical substitution and electronic-state hybridization on the luminescence properties. J. Am. Chem. Soc. 142, 17782–17786 (2020).
19. Qian, H. et al. Suppression of Kasha’s rule as a mechanism for fluorescent molecular rotors and aggregation-induced emission. Nat. Chem. 9, 83–87 (2017).
20. Itoh, T. Fluorescence and phosphorescence from higher excited states of organic molecules. Chem. Rev. 112, 4541−4568 (2012).
21. Demchenko, A. P., Tomin, V. I. & Chou, P. T. Breaking the Kasha rule for more efficient photochemistry. Chem. Rev. 117, 13353–13381 (2017).
22. Xin, H., Hou, B. & Gao, X. Azulene-based π‑functional materials: Design, synthesis, and applications. Acc. Chem. Res. 54, 1737–1753 (2021).
23. Guo, J. et al. Mechanical insights into aggregation-induced delayed fluorescence materials with anti-Kasha behavior. Adv. Sci. 6, 1801629 (2019).
24. Li, Y. et al. Photoinduced radical emission in a coassembly system. Angew. Chem. Int. Ed. 60, 23842–23848 (2021).
25. Hopkinson, M. N., Richter, C., Schedler, M. & Glorius, F. An overview of N-heterocyclic carbenes. Nature 510, 485–496 (2014).
26. Mahoney, J. K. et al. Air-persistent monomeric (amino)(carboxy) radicals derived from cyclic (alkyl)(amino) carbenes. J. Am. Chem. Soc. 137, 7519–7525 (2015).
27. Hansmann, M. M., Melaimi, M. & Bertrand, G. Crystalline monomeric allenyl/propargyl radical. J. Am. Chem. Soc. 139, 15620–15623 (2017).
28. Li, Y. et al. C4 Cumulene and the corresponding air-stable radical cation and dication. Angew. Chem. Int. Ed. 53, 4168–4172 (2014).
29. Antoni, P. W., Bruckhoff, T. & Hansmann, M. M. Organic redox systems based on pyridinium-carbene hybrids. J. Am. Chem. Soc. 141, 9701–9711 (2019).
30. Rottschäfer, D. et al. Crystalline radicals derived from classical N-heterocyclic carbenes. Angew. Chem. Int. Ed. 57, 4765–4768 (2018).
31. Zhao, J., Li, X. & Han, Y.-F. Air-/heat-stable crystalline carbon-centered radicals derived from an annelated N‑heterocyclic carbene. J. Am. Chem. Soc. 143, 14428–14432 (2021).
32. Maiti, A. et al. Anionic boron- and carbon-based hetero-diradicaloids spanned by a p‑phenylene bridge. J. Am. Chem. Soc.143, 3687–3692 (2021).
33. Kim, Y. et al. Highly stable 1,2-dicarbonyl radical cations derived from N‑heterocyclic carbenes. J. Am. Chem. Soc. 143, 8527–8532 (2021).
34. Yang, W. et al. Persistent borafluorene radicals. Angew. Chem. Int. Ed. 59, 3850–3854 (2020).
35. Böhnke, J. et al. Isolation of diborenes and their 90°-twisted diradical congeners. Nat. Commun. 9, 1197 (2018).
36. Welz, E., Böhnke, J., Dewhurst, R. D., Braunschweig, H. & Engels, B. Unravelling the dramatic electrostructural differences between N-heterocyclic carbene-and cyclic (Alkyl)(amino) carbene-stabilized low-valent main group species. J. Am. Chem. Soc. 140, 12580–12591 (2018).
37. Ghadwal, R. S., Reichmann, S. O. & Herbst-Irmer, R. Palladium-catalyzed direct C2-arylation of an N-heterocyclic carbene: An atom-economic route to mesoionic carbene ligands. Chem. Eur. J. 21, 4247–4251 (2015).
38. Dröge, T. & Glorius, F. The measure of all rings—N-heterocyclic carbenes. Angew. Chem. Int. Ed. 49, 6940–6952 (2010).
39. Nelson, D. J. & Nolan, S. P. Quantifying and understanding the electronic properties of N-heterocyclic carbenes. Chem. Soc. Rev. 42, 6723–6753 (2013).
40. Back, O., Henry-Ellinger, M., Martin, C. D., Martin, D. & Bertrand, G. 31P NMR chemical shifts of carbene phosphinidene adducts as an indicator of the π-accepting properties of carbenes. Angew. Chem. Int. Ed. 52, 2939–2943 (2013).
41. Imran, M., Wehrmann, C. M. & Chen. M. S. Open-shell effects on optoelectronic properties: Antiambipolar charge transport and anti-Kasha doublet emission from a N‑substituted bisphenaleny. J. Am. Chem. Soc. 142, 38–43 (2020).
42. Feng, Z. et al. Stable boron-containing blue-photoluminescent radicals. Chin. J. Chem. 39, 1297–1302 (2021).