1. Guzzinati G, Béché A, Lourenco-Martins H et al (2017) Probing the symmetry of the potential of localized surface plasmon resonances with phase-shaped electron beams. Nat Commun 8:14999
2. Klar T, Perner M, Grosse S et al (1998) Surface-plasmon resonances in single metallic nanoparticles. Phys Rev Lett 80(19):4249
3. Xu H, Li H, He Z et al (2018) Theoretical analysis of optical properties and sensing in a dual-layer asymmetric metamaterial. Opt Commun 407:250–254
4. Cao G, Li H, Deng Y et al (2014) Plasmon-induced transparency in a single multimode stub resonator. Opt Express 22(21):25215–25223
5. Xu H, Li H, He Z et al (2017) Dual tunable plasmon-induced transparency based on silicon–air grating coupled graphene structure in terahertz metamaterial. Opt Express 25(17):20780–20790
6. Zhang S, Genov DA, Wang Y et al (2008) Plasmon-induced transparency in metamaterials. Phys Rev Lett 101(4):047401
7. Liu N, Langguth L, Weiss T et al (2009) Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit. Nat Mater 8(9):758–762
8. Gu J, Singh R, Liu X et al (2012) Active control of electromagnetically induced transparency analogue in terahertz metamaterials. Nat Commun 3:1151
9. Safavi-Naeini AH, Alegre TPM, Chan J et al (2011) Electromagnetically induced transparency and slow light with optomechanics. Nature 472(7341):69–73
10. He Z, Li H, Zhan S et al (2014) Combined theoretical analysis for plasmon-induced transparency in waveguide systems. Opt Lett 39(19):5543–5546
11. Liu C, Li H, Xu H et al (2019) Tunable plasmon-induced transparency absorbers based on few-layer black phosphorus ribbon metamaterials. Journal of the Optical Society of America B 36(11):3060–3065
12. Liu C, Li H, Xu H et al (2019) Slow light effect based on tunable plasmon-induced transparency of monolayer black phosphorus. J Phys D: Appl Phys 52(40):405203
13. Chen Z, Li H, Zhan S et al (2015) Sensing characteristics based on Fano resonance in rectangular ring waveguide. Opt Commun 356:373–377
14. Mun SE, Yun H, Choi C et al (2018) Enhancement and switching of Fano resonance in metamaterial. Advanced Optical Materials 6(17):1800545
15. Shafiei F, Monticone F, Le KQ et al (2013) A subwavelength plasmonic metamolecule exhibiting magnetic-based optical Fano resonance. Nat Nanotechnol 8(2):95
16. Rahmani M, Luk'yanchuk B, Hong M (2013) Fano resonance in novel plasmonic nanostructures. Laser Photonics Rev 7(3):329–349
17. Chen Z, Li P, Zhang S et al (2019) Enhanced extraordinary optical transmission and refractive-index sensing sensitivity in tapered plasmonic nanohole arrays. Nanotechnology 30(33):335201
18. Ebbesen TW, Lezec HJ, Ghaemi HF et al (1998) Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391(6668):667–669
19. Pu MB, Wang CT, Wang YQ et al (2017) Subwavelength electromagnetics below the diffraction limit. Acta Physica Sinica 66(14):144101
20. Ma RM, Oulton RF, Sorger VJ et al (2011) Room-temperature sub-diffraction-limited plasmon laser by total internal reflection. Nat Mater 10(2):110–113
21. Wang H, Kundu J, Halas NJ (2007) Plasmonic nanoshell arrays combine surface-enhanced vibrational spectroscopies on a single substrate. Angew Chem Int Ed 46(47):9040–9044
22. Wang T, Dong Z, Koay EHH et al (2019) Surface-Enhanced Infrared Absorption Spectroscopy Using Charge Transfer Plasmons. ACS Photonics 6(5):1272–1278
23. Sriram M, Zong K, Vivekchand SRC et al (2015) Single nanoparticle plasmonic sensors. Sensors 15(10):25774–25792
24. Caucheteur C, Guo T, Albert J (2015) Review of plasmonic fiber optic biochemical sensors: improving the limit of detection. Anal Bioanal Chem 407(14):3883–3897
25. Hsiao VKS, Zheng YB, Juluri BK et al (2008) Light-driven plasmonic switches based on au nanodisk arrays and photoresponsive liquid crystals. Adv Mater 20(18):3528–3532
26. Lin Y, Zhang X (2017) Ultrafast Multipolar Plasmon for Unidirectional Optical Switching in a Hemisphere-Nanoshell Array. Advanced Optical Materials 5(13):1601088
27. Çalışkan D, Bütün B, Özcan Ş et al (2014) Spectral response modification of TiO2 MSM photodetector with an LSPR filter. Opt Express 22(12):14096–14100
28. Gao X, Zhou L, Liao Z et al (2014) An ultra-wideband surface plasmonic filter in microwave frequency. Appl Phys Lett 104(19):191603
29. Wu C, Neuner B III, John J et al (2012) Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems. J Opt 14(2):024005
30. Aydin K, Ferry VE, Briggs RM et al (2011) Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers. Nat Commun 2(1):517
31. Li J, Chen X, Yi Z et al (2020) Broadband solar energy absorber based on monolayer molybdenum disulfide using tungsten elliptical arrays. Materials Today Energy 16:100390
32. Li J, Chen Z, Yang H et al (2020) Tunable Broadband Solar Energy Absorber Based on Monolayer Transition Metal Dichalcogenides Materials Using Au Nanocubes. Nanomaterials 10(2):257
33. Wang Y, Chen Z, Xu D et al (2020) Triple-band perfect metamaterial absorber with good operating angle polarization tolerance based on split ring arrays, Results in Physics, 102951
34. Qin F, Chen Z, Chen X et al (2020) A Tunable Triple-Band Near-Infrared Metamaterial Absorber Based on Au Nano-Cuboids Array. Nanomaterials 10(2):207
35. Cen C, Chen Z, Xu D et al (2020) High Quality Factor, High Sensitivity Metamaterial Graphene—Perfect Absorber Based on Critical Coupling Theory and Impedance Matching. Nanomaterials 10(1):95
36. Fan S, Suh W, Joannopoulos JD (2003) Temporal coupled-mode theory for the Fano resonance in optical resonators. Journal of the Optical Society of America A 20(3):569–572
37. Johnson AC, Marcus CM, Hanson MP et al (2004) Coulomb-modified Fano resonance in a one-lead quantum dot. Phys Rev Lett 93(10):106803
38. Ye J, Wen F, Sobhani H et al (2012) Plasmonic nanoclusters: near field properties of the Fano resonance interrogated with SERS. Nano Lett 12(3):1660–1667
39. Hao F, Sonnefraud Y, Dorpe PV et al (2008) Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance. Nano Lett 8(11):3983–3988
40. Wu C, Khanikaev AB, Shvets G (2011) Broadband slow light metamaterial based on a double-continuum Fano resonance. Phys Rev Lett 106(10):107403
41. Zhan S, Peng Y, He Z et al (2016) Tunable nanoplasmonic sensor based on the asymmetric degree of Fano resonance in MDM waveguide. Sci Rep 6:22428
42. Lu H, Liu X, Mao D et al (2012) Plasmonic nanosensor based on Fano resonance in waveguide-coupled resonators. Opt Lett 37(18):3780–3782
43. Chen J, Yuan J, Zhang Q et al (2018) Dielectric waveguide-enhanced localized surface plasmon resonance refractive index sensing. Optical Materials Express 8(2):342–347
44. He Y, Zhou H, Jin Y et al (2011) Plasmon induced transparency in a dielectric waveguide. Appl Phys Lett 99(4):043113
45. Campanella CE, De Leonardis F, Mastronardi L et al (2015) Investigation of refractive index sensing based on Fano resonance in fiber Bragg grating ring resonators. Opt Express 23(11):14301–14313
46. Shcherbakov MR, Dobynde MI, Dolgova TV et al (2010) Full Poincaré sphere coverage with plasmonic nanoslit metamaterials at Fano resonance. Phys Rev B 82(19):193402
47. Xu H, Zhao M, Zheng M et al (2018) Dual plasmon-induced transparency and slow light effect in monolayer graphene structure with rectangular defects. J Phys D: Appl Phys 52(2):025104
48. Chen Z, Chen J, Wu Z et al (2014) Tunable Fano resonance in hybrid graphene-metal gratings. Appl Phys Lett 104(16):161114
49. Zhang S, Li GC, Chen Y et al (2016) Pronounced Fano resonance in single gold split nanodisks with 15 nm split gaps for intensive second harmonic generation. ACS Nano 10(12):11105–11114
50. Fang Z, Cai J, Yan Z et al (2011) Removing a wedge from a metallic nanodisk reveals a Fano resonance. Nano Lett 11(10):4475–4479
51. Qin F, Lai Y, Yang J et al (2017) Deep Fano resonance with strong polarization dependence in gold nanoplate–nanosphere heterodimers. Nanoscale 9(35):13222–13234
52. Brown LV, Sobhani H, Lassiter JB et al (2010) Heterodimers: plasmonic properties of mismatched nanoparticle pairs. ACS Nano 4(2):819–832
53. Luk'yanchuk B, Zheludev NI, Maier SA et al (2010) The Fano resonance in plasmonic nanostructures and metamaterials. Nat Mater 9(9):707–715
54. Singh R, Cao W, Al-Naib I et al (2014) Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces. Appl Phys Lett 105(17):171101
55. Zhan S, Li H, He Z et al (2015) Sensing analysis based on plasmon induced transparency in nanocavity-coupled waveguide. Opt Express 23(16):20313–20320
56. Tang W, Wang L, Chen X et al (2016) Dynamic metamaterial based on the graphene split ring high-Q Fano-resonnator for sensing applications. Nanoscale 8(33):15196–15204
57. Liu H, Zheng L, Ma P et al (2019) Metasurface generated polarization insensitive Fano resonance for high-performance refractive index sensing. Opt Express 27(9):13252–13262
58. Zhan S, Li H, Cao G et al (2014) Theoretical analysis and applications on nano-block loaded rectangular ring. Journal of the Optical Society of America A 31(10):2263–2267
59. Zhan S, Li H, Cao G et al (2014) Slow light based on plasmon-induced transparency in dual-ring resonator-coupled MDM waveguide system. J Phys D: Appl Phys 47(20):205101
60. Li B, Li H, Zeng L et al (2016) Theoretical analysis and applications in inverse T-shape structure. Journal of the Optical Society of America A 33(5):811–816
61. He Z, Zhao J, Lu H (2020) Tunable nonreciprocal reflection and its stability in a non-PT-symmetric plasmonic resonators coupled waveguide systems. Appl Phys Express 13(1):012009
62. He Z, Peng Y, Li B et al (2016) Aspect ratio control and sensing applications for a slot waveguide with a multimode stub. Appl Phys Express 9(7):072002
63. Chen Z, Li H, Li B et al (2016) Tunable ultra-wide band-stop filter based on single-stub plasmonic-waveguide system. Appl Phys Express 9(10):102002
64. Xiong C, Li H, Xu H et al (2019) Coupling effects in single-mode and multimode resonator-coupled system. Opt Express 27(13):17718–17728
65. He Z, Li H, Li B et al (2016) Theoretical analysis of ultrahigh figure of merit sensing in plasmonic waveguides with a multimode stub. Opt Lett 41(22):5206–5209