1 Baccelli, I. et al. Mubritinib Targets the Electron Transport Chain Complex I and Reveals the Landscape of OXPHOS Dependency in Acute Myeloid Leukemia. Cancer Cell 36, 84-99 e88, doi:10.1016/j.ccell.2019.06.003 (2019).
2 Schockel, L. et al. Targeting mitochondrial complex I using BAY 87-2243 reduces melanoma tumor growth. Cancer Metab 3, 11, doi:10.1186/s40170-015-0138-0 (2015).
3 Andrzejewski, S., Siegel, P. M. & St-Pierre, J. Metabolic Profiles Associated With Metformin Efficacy in Cancer. Front Endocrinol (Lausanne) 9, 372, doi:10.3389/fendo.2018.00372 (2018).
4 Kuramoto, K. et al. Development of a potent and orally active activator of adenosine monophosphate-activated protein kinase (AMPK), ASP4132, as a clinical candidate for the treatment of human cancer. Bioorg Med Chem 28, 115307, doi:10.1016/j.bmc.2020.115307 (2020).
5 Xu, Y., Xue, D., Bankhead, A., 3rd & Neamati, N. Why All the Fuss about Oxidative Phosphorylation (OXPHOS)? J Med Chem 63, 14276-14307, doi:10.1021/acs.jmedchem.0c01013 (2020).
6 Rha, S. Y. et al. Phase I study of IM156, a novel potent biguanide oxidative phosphorylation (OXPHOS) inhibitor, in patients with advanced solid tumors. Journal of Clinical Oncology 38, 3590-3590, doi:10.1200/JCO.2020.38.15_suppl.3590 (2020).
7 Sullivan, L. B. et al. Supporting Aspartate Biosynthesis Is an Essential Function of Respiration in Proliferating Cells. Cell 162, 552-563, doi:10.1016/j.cell.2015.07.017 (2015).
8 Kuntz, E. M. et al. Targeting mitochondrial oxidative phosphorylation eradicates therapy-resistant chronic myeloid leukemia stem cells. Nat Med 23, 1234-1240, doi:10.1038/nm.4399 (2017).
9 Stuani, L. et al. Mitochondrial metabolism supports resistance to IDH mutant inhibitors in acute myeloid leukemia. J Exp Med 218, doi:10.1084/jem.20200924 (2021).
10 Dykens, J. A. et al. Biguanide-induced mitochondrial dysfunction yields increased lactate production and cytotoxicity of aerobically-poised HepG2 cells and human hepatocytes in vitro. Toxicol Appl Pharmacol 233, 203-210, doi:10.1016/j.taap.2008.08.013 (2008).
11 Bridges, H. R., Jones, A. J., Pollak, M. N. & Hirst, J. Effects of metformin and other biguanides on oxidative phosphorylation in mitochondria. Biochem J 462, 475-487, doi:10.1042/BJ20140620 (2014).
12 Sanchez, M., Gastaldi, L., Remedi, M., Caceres, A. & Landa, C. Rotenone-induced toxicity is mediated by Rho-GTPases in hippocampal neurons. Toxicol Sci 104, 352-361, doi:10.1093/toxsci/kfn092 (2008).
13 Trotta, A. P. et al. Disruption of mitochondrial electron transport chain function potentiates the pro-apoptotic effects of MAPK inhibition. J Biol Chem 292, 11727-11739, doi:10.1074/jbc.M117.786442 (2017).
14 Janku, F. et al. First-in-human evaluation of the novel mitochondrial complex I inhibitor ASP4132 for treatment of cancer. Invest New Drugs, doi:10.1007/s10637-021-01112-7 (2021).
15 Molina, J. R. et al. An inhibitor of oxidative phosphorylation exploits cancer vulnerability. Nat Med 24, 1036-1046, doi:10.1038/s41591-018-0052-4 (2018).
16 Chung, I. et al. Cork-in-bottle mechanism of inhibitor binding to mammalian complex I. Sci Adv 7, doi:10.1126/sciadv.abg4000 (2021).
17 Samudio, I. et al. Pharmacologic inhibition of fatty acid oxidation sensitizes human leukemia cells to apoptosis induction. J Clin Invest 120, 142-156, doi:10.1172/JCI38942 (2010).
18 Lagadinou, E. D. et al. BCL-2 inhibition targets oxidative phosphorylation and selectively eradicates quiescent human leukemia stem cells. Cell Stem Cell 12, 329-341, doi:10.1016/j.stem.2012.12.013 (2013).
19 Boultwood, J. et al. Amplification of mitochondrial DNA in acute myeloid leukaemia. Br J Haematol 95, 426-431, doi:10.1046/j.1365-2141.1996.d01-1922.x (1996).
20 Lissanu Deribe, Y. et al. Mutations in the SWI/SNF complex induce a targetable dependence on oxidative phosphorylation in lung cancer. Nat Med 24, 1047-1057, doi:10.1038/s41591-018-0019-5 (2018).
21 Piel, S., Ehinger, J. K., Elmer, E. & Hansson, M. J. Metformin induces lactate production in peripheral blood mononuclear cells and platelets through specific mitochondrial complex I inhibition. Acta Physiol (Oxf) 213, 171-180, doi:10.1111/apha.12311 (2015).
22 Bando, K. et al. Comparison of potential risks of lactic acidosis induction by biguanides in rats. Regul Toxicol Pharmacol 58, 155-160, doi:10.1016/j.yrtph.2010.05.005 (2010).
23 Dohner, H. et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood 129, 424-447, doi:10.1182/blood-2016-08-733196 (2017).
24 Nishino, M., Jagannathan, J. P., Ramaiya, N. H. & Van den Abbeele, A. D. Revised RECIST guideline version 1.1: what oncologists want to know and what radiologists need to know. American Journal of Roentgenology 195, 281-289 (2010).
25 Saito, K. et al. Exogenous mitochondrial transfer and endogenous mitochondrial fission facilitate AML resistance to OxPhos inhibition. Blood Adv, doi:10.1182/bloodadvances.2020003661 (2021).
26 Deuis, J. R., Dvorakova, L. S. & Vetter, I. Methods Used to Evaluate Pain Behaviors in Rodents. Front Mol Neurosci 10, 284, doi:10.3389/fnmol.2017.00284 (2017).
27 Curzon, P., Zhang, M., Radek, R. J. & Fox, G. B. in Methods of Behavior Analysis in Neuroscience Frontiers in Neuroscience (eds nd & J. J. Buccafusco) (2009).
28 Bennett, G. J., Doyle, T. & Salvemini, D. Mitotoxicity in distal symmetrical sensory peripheral neuropathies. Nat Rev Neurol 10, 326-336, doi:10.1038/nrneurol.2014.77 (2014).
29 Ma, J., Kavelaars, A., Dougherty, P. M. & Heijnen, C. J. Beyond symptomatic relief for chemotherapy-induced peripheral neuropathy: Targeting the source. Cancer 124, 2289-2298, doi:10.1002/cncr.31248 (2018).
30 Kiryu-Seo, S. & Kiyama, H. Mitochondrial behavior during axon regeneration/degeneration in vivo. Neurosci Res 139, 42-47, doi:10.1016/j.neures.2018.08.014 (2019).
31 Krukowski, K. et al. HDAC6 inhibition effectively reverses chemotherapy-induced peripheral neuropathy. Pain 158, 1126-1137, doi:10.1097/j.pain.0000000000000893 (2017).
32 Kirkpatrick, D. L. & Powis, G. Clinically Evaluated Cancer Drugs Inhibiting Redox Signaling. Antioxid Redox Signal 26, 262-273, doi:10.1089/ars.2016.6633 (2017).
33 Jha, M. K., Lee, I. K. & Suk, K. Metabolic reprogramming by the pyruvate dehydrogenase kinase-lactic acid axis: Linking metabolism and diverse neuropathophysiologies. Neurosci Biobehav Rev 68, 1-19, doi:10.1016/j.neubiorev.2016.05.006 (2016).
34 Flatters, S. J. L. & Bennett, G. J. Studies of peripheral sensory nerves in paclitaxel-induced painful peripheral neuropathy: evidence for mitochondrial dysfunction. Pain 122, 245-257, doi:10.1016/j.pain.2006.01.037 (2006).
35 Maj, M. A., Ma, J., Krukowski, K. N., Kavelaars, A. & Heijnen, C. J. Inhibition of Mitochondrial p53 Accumulation by PFT-mu Prevents Cisplatin-Induced Peripheral Neuropathy. Front Mol Neurosci 10, 108, doi:10.3389/fnmol.2017.00108 (2017).
36 Xiao, W. H. & Bennett, G. J. Effects of mitochondrial poisons on the neuropathic pain produced by the chemotherapeutic agents, paclitaxel and oxaliplatin. Pain 153, 704-709, doi:10.1016/j.pain.2011.12.011 (2012).
37 Zheng, H., Xiao, W. H. & Bennett, G. J. Mitotoxicity and bortezomib-induced chronic painful peripheral neuropathy. Exp Neurol 238, 225-234, doi:10.1016/j.expneurol.2012.08.023 (2012).
38 Krukowski, K., Nijboer, C. H., Huo, X., Kavelaars, A. & Heijnen, C. J. Prevention of chemotherapy-induced peripheral neuropathy by the small-molecule inhibitor pifithrin-mu. Pain 156, 2184-2192, doi:10.1097/j.pain.0000000000000290 (2015).
39 Gillies, R. J., Robey, I. & Gatenby, R. A. Causes and consequences of increased glucose metabolism of cancers. J Nucl Med 49 Suppl 2, 24S-42S, doi:10.2967/jnumed.107.047258 (2008).
40 Durante, M. et al. Adenosine A3 agonists reverse neuropathic pain via T cell-mediated production of IL-10. J Clin Invest 131, doi:10.1172/JCI139299 (2021).
41 Ruzhansky, K. M. & Brannagan, T. H., 3rd. Neuromuscular complications of hematopoietic stem cell transplantation. Muscle Nerve 52, 480-487, doi:10.1002/mus.24724 (2015).
42 Sakellari, I. et al. Neurological adverse events post allogeneic hematopoietic cell transplantation: major determinants of morbidity and mortality. J Neurol 266, 1960-1972, doi:10.1007/s00415-019-09372-3 (2019).
43 Koeppen, S., Thirugnanasambanthan, A. & Koldehoff, M. Neuromuscular complications after hematopoietic stem cell transplantation. Support Care Cancer 22, 2337-2341, doi:10.1007/s00520-014-2225-0 (2014).
44 Dowling, M. R. et al. Neurologic complications after allogeneic hematopoietic stem cell transplantation: risk factors and impact. Bone Marrow Transplant 53, 199-206, doi:10.1038/bmt.2017.239 (2018).
45 Siegal, D. et al. Central nervous system complications after allogeneic hematopoietic stem cell transplantation: incidence, manifestations, and clinical significance. Biol Blood Marrow Transplant 13, 1369-1379, doi:10.1016/j.bbmt.2007.07.013 (2007).
46 Rooney, J. P. et al. PCR based determination of mitochondrial DNA copy number in multiple species. Methods Mol Biol 1241, 23-38, doi:10.1007/978-1-4939-1875-1_3 (2015).
47 Lodi, A. et al. Combinatorial treatment with natural compounds in prostate cancer inhibits prostate tumor growth and leads to key modulations of cancer cell metabolism. NPJ Precis Oncol 1, doi:10.1038/s41698-017-0024-z (2017).
48 Stanford, S. M. et al. The low molecular weight protein tyrosine phosphatase promotes adipogenesis and subcutaneous adipocyte hypertrophy. J Cell Physiol 236, 6630-6642, doi:10.1002/jcp.30307 (2021).
49 Wishart, D. S. et al. HMDB: the Human Metabolome Database. Nucleic Acids Res 35, D521-526, doi:10.1093/nar/gkl923 (2007).
50 Okuda, S. et al. KEGG Atlas mapping for global analysis of metabolic pathways. Nucleic Acids Res 36, W423-426, doi:10.1093/nar/gkn282 (2008).
51 Chao, H. P. et al. Systematic evaluation of RNA-Seq preparation protocol performance. BMC Genomics 20, 571, doi:10.1186/s12864-019-5953-1 (2019).
52 Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon provides fast and bias-aware quantification of transcript expression. Nat Methods 14, 417-419, doi:10.1038/nmeth.4197 (2017).
53 Robinson, M. D. & Oshlack, A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol 11, R25, doi:10.1186/gb-2010-11-3-r25 (2010).
54 Benjamini, Y. & Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society: Series B (Methodological) 57, 289-300, doi:https://doi.org/10.1111/j.2517-6161.1995.tb02031.x (1995).
55 Kolde, R. & Vilo, J. GOsummaries: an R Package for Visual Functional Annotation of Experimental Data. F1000Res 4, 574, doi:10.12688/f1000research.6925.1 (2015).
56 Wang, B., Cunningham, J. M. & Yang, X. H. Seq2pathway: an R/Bioconductor package for pathway analysis of next-generation sequencing data. Bioinformatics 31, 3043-3045, doi:10.1093/bioinformatics/btv289 (2015).
57 Chaplan, S. R., Bach, F. W., Pogrel, J. W., Chung, J. M. & Yaksh, T. L. Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods 53, 55-63, doi:10.1016/0165-0270(94)90144-9 (1994).
58 Singhmar, P. et al. The fibroblast-derived protein PI16 controls neuropathic pain. Proc Natl Acad Sci U S A 117, 5463-5471, doi:10.1073/pnas.1913444117 (2020).
59 Ma, J. et al. Cell-specific role of histone deacetylase 6 in chemotherapy-induced mechanical allodynia and loss of intraepidermal nerve fibers. Pain 160, 2877-2890, doi:10.1097/j.pain.0000000000001667 (2019).
60 Laumet, G. et al. Interleukin-10 resolves pain hypersensitivity induced by cisplatin by reversing sensory neuron hyperexcitability. Pain 161, 2344-2352, doi:10.1097/j.pain.0000000000001921 (2020).
61 Mao-Ying, Q. L. et al. The anti-diabetic drug metformin protects against chemotherapy-induced peripheral neuropathy in a mouse model. PLoS One 9, e100701, doi:10.1371/journal.pone.0100701 (2014).