1. Afzelius, M., Simon, C., de Riedmatten, H. & Gisin, N. Multimode quantum memory based on atomic frequency combs. Phys. Rev. A 79, 52329 (2009).
2. Kimble, H. J. The quantum internet. Nature 453, 1023–1030 (2008).
3. Saglamyurek, E. et al. Broadband waveguide quantum memory for entangled photons. Nature 469, 512–515 (2011)
4. Davidson, J. H., Lefebvre, P., Zhang, J., Oblak, D. & Tittel, W. Improved light-matter interaction for storage of quantum states of light in a thulium-doped crystal cavity. Phys. Rev. A 101, 42333 (2020).
5. Corrielli, G., Seri, A., Mazzera, M., Osellame, R. & de Riedmatten, H. Integrated Optical Memory Based on Laser-Written Waveguides. Phys. Rev. Appl. 5, 54013 (2016).
6. Zhong, T. et al. Nanophotonic rare-earth quantum memory with optically controlled retrieval. Science 357, 1392-1395 (2017).
7. Sinclair, N., Oblak, D., Thiel, C. W., Cone, R. L. & Tittel, W. Properties of a Rare-Earth-Ion-Doped Waveguide at Sub-Kelvin Temperatures for Quantum Signal Processing. Phys. Rev. Lett. 118, 100504 (2017).
8. Dutta, S., Goldschmidt, E. A., Barik, S., Saha, U. & Waks, E. Integrated Photonic Platform for Rare-Earth Ions in Thin Film Lithium Niobate. Nano Lett. 20, 741–747 (2020).
9. Boes, A., Corcoran, B., Chang, L., Bowers, J. & Mitchell, A. Status and Potential of Lithium Niobate on Insulator (LNOI) for Photonic Integrated Circuits. Laser Photonics Rev. 12, 1–19 (2018).
10. Thiel, C. W., Sun, Y., Macfarlane, R. M., Böttger, T. & Cone, R. L. Rare-earth-doped LiNbO 3 and KTiOPO 4 (KTP) for waveguide quantum memories. J. Phys. B At. Mol. Opt. Phys. 45, 124013 (2012).
11. Jiang, X., Pak, D., Nandi, A., Xuan, Y. & Hosseini, M. Rare earth-implanted lithium niobate: Properties and on-chip integration. Appl. Phys. Lett. 115, 71104 (2019).
12. Sinclair, N. et al. Spectroscopic investigations of a Ti: Tm LiNbO3 waveguide for photon-echo quantum memory. in Journal of Luminescence 130, 1586-1593 (2010)..
13. Luke, K. et al. Wafer-scale low-loss lithium niobate photonic integrated circuits. Opt. Express 28, 24452–24458 (2020).
14. Zhang, M., Wang, C., Cheng, R., Shams-Ansari, A. & Loncar, M. Monolithic Ultrahigh-Q Lithium Niobate Microring Resonator. Optica 4, 1536-1537 (2017).
15. Wang, C., Zhang, M., Stern, B., Lipson, M. & Loncar, M. Nanophotonic Lithium Niobate Electro-optic Modulators. Optics Express 26, 1547-1555 (2017).
16. Wang, S. et al. Incorporation of erbium ions into thin-film lithium niobate integrated photonics. Appl. Phys. Lett. 116, 151103 (2020).
17. Heshami, K. et al. Quantum memories: emerging applications and recent advances. J. Mod. Opt. 63, 2005–2028 (2016).
18. Zhong, T. & Goldner, P. Review article Emerging rare-earth doped material platforms for quantum nanophotonics. Nanophotonics 8 (2019).
19. Sun, Y., Thiel, C. W. & Cone, R. L. Optical decoherence and energy level structure of 0.1%Tm 3+ :LiNbO 3. Phys. Rev. B 85, 165106 (2012).
20. Thiel, C. W., Sun, Y., Bttger, T., Babbitt, W. R. & Cone, R. L. Optical decoherence and persistent spectral hole burning in Tm 3:LiNbO3. in Journal of Luminescence 130, 1598-1602 (2010).
21. Li, M., Liang, H., Luo, R., He, Y. & Lin, Q. High-Q 2D Lithium Niobate Photonic Crystal Slab Nanoresonators. 1800228, 1–8 (2019).
22. Liang, H., Luo, R., He, Y., Jiang, H. & Lin, Q. High-quality lithium niobate photonic crystal nanocavities. Optica 4, 1251-1258 (2017).
23. Afzelius, M. & Simon, C. Impedance-matched cavity quantum memory. Phys. Rev. A - At. Mol. Opt. Phys. 82, 1–4 (2010).
24. Fossati, A. et al. A frequency-multiplexed coherent electro-optic memory in rare earth doped nanoparticles. Nano Lett. 20, 7087–7093 (2020).
25. Xia, K. et al. High-Speed Tunable Microcavities Coupled to Rare-Earth Quantum Emitters. arXiv 2104.00389 (2021).