1 Cogswell, R. et al. An early investigation of outcomes with the new 2018 donor heart allocation system in the United States. J. Heart Lung Transplant. 39, 1-4, doi:10.1016/j.healun.2019.11.002 (2020).
2 Hsich, E. M. et al. Heart Transplantation: An In-Depth Survival Analysis. JACC Heart Fail 8, 557-568, doi:10.1016/j.jchf.2020.03.014 (2020).
3 Christodoulou, E. et al. A systematic review shows no performance benefit of machine learning over logistic regression for clinical prediction models. J. Clin. Epidemiol. 110, 12-22, doi:10.1016/j.jclinepi.2019.02.004 (2019).
4 Rudin, C. Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nature Machine Intelligence 1, 206-215, doi:10.1038/s42256-019-0048-x (2019).
5 Caruana, R. et al. in Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 1721–1730 (Association for Computing Machinery).
6 Lundberg, S. M. & Lee, S.-I. in Advances in Neural Information Processing Systems 30 (eds I. Guyon et al.) 4765--4774 (Curran Associates, Inc., 2017).
7 Alvarez Melis, D. & Jaakkola, T. in 32nd Conf. Neural Inf. Process. Syst Vol. 31 (eds S. Bengio et al.) (Curran Associates, Inc., Montréal, Canada, 2018).
8 White, H. Artificial neural networks. (Blackwell Cambridge, Mass., 1992).
9 Hooker, G. Generalized Functional ANOVA Diagnostics for High-Dimensional Functions of Dependent Variables. Journal of Computational and Graphical Statistics 16, 709-732, doi:10.1198/106186007x237892 (2007).
10 Nilsson, J. et al. The International Heart Transplant Survival Algorithm (IHTSA): a new model to improve organ sharing and survival. PLoS One 10, e0118644, doi:10.1371/journal.pone.0118644 (2015).
11 Weiss, E. S. et al. Creation of a quantitative recipient risk index for mortality prediction after cardiac transplantation (IMPACT). Ann. Thorac. Surg. 92, 914-921; discussion 921-912, doi:10.1016/j.athoracsur.2011.04.030 (2011).
12 Lou, Y., Caruana, R. & Gehrke, J. in KDD '12: Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining. 150-158.
13 Dorent, R. et al. New French heart allocation system: Comparison with Eurotransplant and US allocation systems. Am. J. Transplant. 20, 1236-1243, doi:10.1111/ajt.15816 (2020).
14 Babic, B., Cohen, G., Evgeniou, T., Gerke, S. & Trichakis, N. Can AI Fairly Decide Who Gets an Organ Transplant?, 2020).
15 Martin, K. Ethical Implications and Accountability of Algorithms. Journal of Business Ethics 160, 835-850, doi:10.1007/s10551-018-3921-3 (2018).
16 Aleksova, N. et al. Risk prediction models for survival after heart transplantation: A systematic review. Am. J. Transplant. 20, 1137-1151, doi:10.1111/ajt.15708 (2020).
17 Yoon, J. et al. Personalized survival predictions via Trees of Predictors: An application to cardiac transplantation. PLoS One 13, e0194985, doi:10.1371/journal.pone.0194985 (2018).
18 Miller, R. J. H. et al. Temporal Shift and Predictive Performance of Machine Learning for Heart Transplant Outcomes. The Journal of Heart and Lung Transplantation, doi:10.1016/j.healun.2022.03.019 (2022).
19 Lund, L. H. et al. The Registry of the International Society for Heart and Lung Transplantation: Thirty-fourth Adult Heart Transplantation Report-2017; Focus Theme: Allograft ischemic time. J. Heart Lung Transplant. 36, 1037-1046, doi:10.1016/j.healun.2017.07.019 (2017).
20 Griepp, R. B., Stinson, E. B., Clark, D. A., Dong, E., Jr. & Shumway, N. E. The cardiac donor. Surg. Gynecol. Obstet. 133, 792-798 (1971).
21 Stehlik, J. et al. The Registry of the International Society for Heart and Lung Transplantation: 29th official adult heart transplant report--2012. J. Heart Lung Transplant. 31, 1052-1064, doi:10.1016/j.healun.2012.08.002 (2012).
22 Lipshultz, S. E. et al. Cardiomyopathy in Children: Classification and Diagnosis: A Scientific Statement From the American Heart Association. Circulation 140, e9-e68, doi:10.1161/CIR.0000000000000682 (2019).
23 Dickinson, D. M. et al. Transplant data: sources, collection, and caveats. Am. J. Transplant. 4 Suppl 9, 13-26, doi:10.1111/j.1600-6135.2004.00395.x (2004).
24 Medved, D. et al. Improving prediction of heart transplantation outcome using deep learning techniques. Sci. Rep. 8, 3613, doi:10.1038/s41598-018-21417-7 (2018).
25 DeLong, E. R., DeLong, D. M. & Clarke-Pearson, D. L. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 44, 837-845 (1988).