Lethal effects of algal extracts on mosquito larvae and histopathological study
The recorded lethal toxic values of various solvents – extracts of algae (S. wightii on the larvae of A. stephensi, A. aegypti and C. quinquefasciatus) are furnished in Table 1. The toxicity values of Hexane, ethyl acetate and methanol crude extracts of S. ilicifolium & Gelidiella acerosa against the A. stephensi, A. aegypti and C. quinquefasciatus larvae including the obtained lethal concentration (LC50 and LC90) are presented in Table 2,3.
Table 1 Mosquito-larvicidal activities of S. wightii extract of A. aegypti, C. quinquefasciatus and A. stephensi.
Mosquito vector
|
Sample
|
LC50 µg/ml (LCL-UCL)
|
LC90 µg/ml (LCL-UCL)
|
χ 2
|
A. aegypti
|
SWH
|
12.42
(9.33±20.53)
|
58.74
(32.72±162.65)
|
1.172
|
SWEA
|
9.26
(7.14±13.50)
|
52.00
(29.86±128.96)
|
3.110
|
SWM
|
11.57
(8.04±19.98)
|
72.11
(49.04±398.42)
|
2.641
|
C. quinquefasciatus
|
SWH
|
6.38
(5.34±7.97)
|
42.94
(17.49±42.30)
|
1.332
|
SWEA
|
4.43
(3.64±5.57)
|
24.44
(16.32±44.55)
|
4.373
|
SWM
|
7.62
(6.20±10.03)
|
33.41
(21.80±64.97)
|
1.602
|
A. stephensi
|
SWH
|
5.86
(1.41±13.36)
|
18.42
(11.52±39.15)
|
3.724
|
SWEA
|
3.98
(2.14±10.66)
|
12.17
(4.81±29.69)
|
2.977
|
SWM
|
4.28
(3.87±19.76)
|
13.24
(9.41±21.74)
|
2.691
|
*SD standard deviation, LCL lower confidence limit, UCL upper confidence limit, χ² Chi square test, p<0.05, level of significance, values are mean ± SD of three replicates.
Table 2 Mosquito-larvicidal activities of S. ilicifolium extract of A. aegypti, C. quinquefasciatus and A. stephensi.
Mosquito vector
|
Sample
|
LC50 µg/ml (LCL-UCL)
|
LC90 µg/ml (LCL-UCL)
|
χ 2
|
A. aegypti
|
SIH
|
37.739
(29.396±53.161)
|
415.271
(371.282±772.821)
|
1.706
|
SIEA
|
34.104
(12.853±58.838)
|
423.012
(169.842±521.523)
|
2.901
|
SIM
|
34.733
(17.165±38.365)
|
462.729
(262.821±582.357)
|
2.201
|
C. quinquefasciatus
|
SIH
|
40.739
(29.649±89.820)
|
448.483
(342.218±619.342)
|
1.793
|
SIEA
|
42.728
(36.052±98.452)
|
683.813
(520.327±720.318)
|
3.158
|
SIM
|
44.305
(27.300±76.366)
|
631.380
(202.655±711.312)
|
2.606
|
A. stephensi
|
SIH
|
26.069
(16.069±41.359)
|
451.285
(185.301±502.552)
|
1.111
|
SIEA
|
18.934
(14.729±34.277)
|
371.753
(151.786±421.152)
|
2.935
|
SIM
|
22.609
(15.666±25.472)
|
361.191
(133.226±421.152)
|
1.308
|
*SD standard deviation, LCL lower confidence limit, UCL upper confidence limit, χ² Chi square test, p<0.05, level of significance, values are mean ± SD of three replicates.
Table 3 Mosquito-larvicidal activities of G. acerosa extract of A. aegypti, C. quinquefasciatus and A. stephensi.
Mosquito vector
|
Sample
|
LC50 µg/ml (LCL-UCL)
|
LC90 µg/ml (LCL-UCL)
|
χ 2
|
A. aegypti
|
GAH
|
27.866
(15.466-40.153)
|
309.943
(193.011-632.122)
|
2.803
|
GAEA
|
23.261
(10.458-32.284)
|
354.903
(168.259-601.141)
|
1.768
|
GAM
|
39.322
(6.112-25.947)
|
526.431
(168.108-529.221)
|
3.861
|
C. quinquefasciatus
|
GAH
|
17.82
(3.92-28.20)
|
109.23
(78.11-207.59)
|
1.022
|
GAEA
|
14.18
(4.58-29.28)
|
78.77
(56.85-98.97)
|
3.183
|
GAM
|
16.18
(4.14-32.88)
|
87.07
(61.74-102.83)
|
2.576
|
A. stephensi
|
GAH
|
5.19
(2.71-10.9)
|
16.98
(10.33-42.97)
|
1.231
|
GAEA
|
4.59
(2.19-5.056)
|
15.91
(8.31-28.87)
|
3.183
|
GAM
|
4.81
(3.85-12.45)
|
15.88
(12.43-34.83)
|
2.252
|
*SD standard deviation, LCL lower confidence limit, UCL upper confidence limit, χ² Chi square test, p<0.05, level of significance, values are mean ± SD of three replicates.
Presently the ethyl acetate extracts have caused high larval- death – toll in all the mosquito species. The S. wightii ethyl acetate (SW-EA) exhibited most-increased rate of toxicity on A. stephensi at the concentration (μg/mL) of 3.98 as LC50 - dose & 12.17 as LC90-value, followed by 4.43 & 24.44 in C. quinquefasciatus and 9.26 & 52.00 in A. aegypti, respectively. The S. ilicifolium ethyl acetate - extract (SI-EA) exhibited most-increased rate of toxicity on A. stephensi at the concentration (μg/mL) of 18.934 as LC50- dose & 371.753 as LC90 value, followed by 34.104 & 423.012 in A. aegypti, and 40.728 & 683.813 in C. quinquefasciatus respectively. The G. acerosa ethyl acetate (GA-EA) exhibited most-increased rate of toxicity on A. stephensi at the concentration (μg/mL) of 4.59 as LC50 - dose & 15.91 as LC90-value, followed by 23.261 & 354.90 in A. aegypti and 14.18 & 78.77 in C. quinquefasciatus respectively. Among the different solvent extracts of S. wightii, S. ilicifolium and G. acerosa, the ethyl acetate - extract caused high toll (Figs. 1,2,3). The control did not show any mortality and the χ 2 value was noteworthy at p < 0.05 level.
The histopathology of SW-EA, SI-EA and GA-EA extracts treated larvae revealed disordered and broken epithelial cell layers with severely affected midgut, gut lumen, and muscles. And the control group mosquito larvae did not show any deformities. The malformations were observed in the bodies of the mosquito larvae treated by crude extracts. (Fig. 4). In addition to the swelling, the deformation /elongation of the epithelial cells were also found.
Toxicity on Non-target Brine Shrimp (A. salina)
The toxicity of SW-EA, GA-EA and SI-EA were assessed by using A. salina. at 24 h exposure, and the results are shown in Table 4; Fig. 5. The SW-EA, SI-EA and GA-EA did not exert any cytotoxicity in the nauplii stage of the A. salina. First the GA-EA exhibited minimum death-toll at the concentration (μg/mL) of LC50 and LC90 values as; 127.805 & 312.163; next to that SW-EA exhibited death-toll at the concentration (μg/mL) of LC50 and LC90 values as; 117.009 & 610.296, and SI-EA exhibited death rate at the concentration (μg/mL) of LC50 and LC90 values as; 114.512 & 305.366 respectively. The ethyl acetate extracts of GA-EA, SW-EA and SI-EA have exhibited 19.04%, 20.02% and 25.02 % mortality at 24 h. And also, the experiment revealed that the control and treated groups did not induce any lethal effect on A. nauplii and adult at 24 h exposure. These results have indicated that the percentage of mortality rates were significantly increased with increasing seaweeds – extracts - concentrations and exposure time.
Table 4 Non-toxicity bioassay of seaweed extract on Artemia salina (Brine Shrimp).
Mosquito vector
|
Sample
|
LC50 µg/ml (LCL-UCL)
|
LC90 µg/ml (LCL-UCL)
|
χ 2
|
A. salina
|
SW
|
117.009
(47.43-175.23)
|
610.296
(220.43-632.12)
|
1.703
|
GA
|
127.805
(65.43-145.23)
|
312.163
(134.23-429.23)
|
2.268
|
SI
|
114.512
(52.33-25.142.23)
|
305.366
(168.108-529.221)
|
1.361
|
Phytochemical-Profile
The recorded phyto-chemical constituents of various solvent - extracts of seaweeds are listed in Table 5. Invariably, the ethyl acetate extracts were found to possess high number of 18 compounds. Next, the methanol & hexane extracts revealed the presence of 17 compounds in each extract.
Table 5 Phytochemical profile of S. wightii, S. ilicifolium and G. acerosa - ethyl acetate crude - extracts.
Samples
|
Alkaloids
|
Terpenoids
|
Steroids
|
Tannins
|
Saponins
|
Flavonoids
|
Phenols
|
Coumarins
|
Quinones
|
Glycosides
|
SW
|
Hexane
|
+
|
+
|
+
|
+
|
_
|
_
|
+
|
_
|
_
|
+
|
Ethyl acetate
|
+
|
+
|
+
|
+
|
_
|
_
|
+
|
_
|
+
|
+
|
Methanol
|
+
|
+
|
+
|
_
|
_
|
_
|
_
|
_
|
+
|
_
|
SI
|
Hexane
|
+
|
+
|
+
|
_
|
_
|
_
|
_
|
_
|
_
|
+
|
Ethyl acetate
|
+
|
+
|
+
|
_
|
_
|
_
|
_
|
_
|
+
|
_
|
Methanol
|
+
|
+
|
+
|
_
|
_
|
+
|
_
|
+
|
+
|
_
|
GA
|
Hexane
|
+
|
+
|
+
|
_
|
_
|
+
|
+
|
_
|
+
|
+
|
Ethyl acetate
|
+
|
+
|
+
|
_
|
_
|
+
|
+
|
_
|
+
|
+
|
Methanol
|
+
|
+
|
+
|
_
|
+
|
+
|
_
|
+
|
+
|
_
|
FTIR findings
Through FTIR analysis of the seaweed – extracts many functional groups were determined. The FTIR spectrum of S. wightii showed seven peaks at the range of 3425.01 cm-1, 2926.00 cm-1, 2854.51 cm-1, 1716.58 cm-1, 1378.66 cm-1, 1377.81 cm-1, 1172.29 cm-1, 1053.27 cm-1and the obtained major peak at 3425.01 cm-1 could be related to the OH stretching vibration of alcohols and phenols. The spectrum of S. ilicifolium showed seven peaks at the range of 3395.58 cm-1, 2926.24 cm-1, 2855.05 cm-1, 1713.11 cm-1, 1465.20 cm-1, 1377.81 cm-1, 1241.21 cm-1and the major peak at 3395.58 cm-1has to be related to the OH vibration-stretching of alcohols and phenols. And G. acerosa showed seven major peaks at the range of 2924.22 cm-1, 2854.04 cm-1, 1710.71 cm-1, 1465.70 cm-1, 1376.12 cm-1, 1237.18 cm-1, 1047.02 cm-1, 721.87 cm-1respectively and the major peak at 2924.22 cm-1 could be related to the C-H stretching vibration of alkenes (Table 6 & Fig. 6).
Table 6 Structural features of the ethyl acetate extracts of S. wightii, S. ilicifolium and G. acerosa by FTIR spectra.
S.No
|
Frequency
|
Bond
|
Functional Group
|
SW
|
3425.01 cm-1
|
OH – stretch
H- Bonded
|
Alcohols, Phenols
|
2926.00 cm-1
|
C-H stretch
|
Aromatics
|
2854.51 cm-1
|
C-H stretch
|
Alkenes
|
1716.58 cm-1
|
C=O stretch
|
Esters
|
1378.66 cm-1
|
C-H stretch
|
Alkenes
|
1172.29 cm-1
|
C-H wag (-CH2X)
|
Alkyl halides
|
1053.27 cm-1
|
C-N stretch
|
Aliphatic Amins
|
SI
|
3395.58 cm-1
|
OH – stretch
H- bonded
|
Alcohols, Phenols
|
2926.24 cm-1
|
C-H stretch
|
Alkenes
|
2855.05 cm-1
|
C-H stretch
|
Alkenes
|
1713.11 cm-1
|
C=O stretch
|
Aliphatic, Esters
|
1465.20 cm-1
|
C-H bend
|
Alkenes
|
1377.81 cm-1
|
C-H rock
|
Alkenes
|
1241.21 cm-1
|
C-N stretch
|
Aliphatic Amins
|
GA
|
2924.22 cm-1
|
C-H stretch
|
Alkenes
|
2854.04 cm-1
|
C-H stretch
|
Alkenes
|
1710.71 cm-1
|
C=O stretch
|
Aldehydes, Ketones
|
1465.70 cm-1
|
C-H bend
|
Alkenes
|
1376.12 cm-1
|
C-H stretch
|
Alkenes
|
1237.18 cm-1
|
C-N Stretch
|
Aliphatic Amins
|
1047.02 cm-1
|
C-N stretch
|
Aliphatic Amins
|
721.87 cm-1
|
C-H rock
|
Alkanes
|
Compounds present
The GC-MS running time for n-hexane: ethyl acetate (50:50 v/v) extract(s) of S. wightii grev, S. ilicifolium and G. acerosa was 30 min and the obtained spectra are provided in Fig.7. The identified compounds (of seaweeds), their mass ions & retentions times are shown in Table 7. The results revealed that, S. wightii extracts contained 15 bioactive compounds viz; CYCLOPROPANE, NONYL-, Decane, Neodene, 1-HEXADECANOL, Phytol acetate, 1-Octadecyne, n-Hexadecanoic acid, Capraldehyde, Caprylaldehyde, Nonyl acetate, Neodene, Eicosane, Caproleic acid, Diphenylcyclopropane, thiadiazole; The S. ilicifolium possessed 11 compounds viz; Docosane-1,2-diol, isopropylidene deriv, Capric acid, 1-tridecene, 3-Tetradecene, (Z)-, Hendecane, 5-octadecene, (E)-, Phytol acetate, octadecanoic acid, Cinnamyl alcohol <alpha-amyl->, cis-2-Methyl-7-octadecene, Ethyl homovanillate, TMS derivative; G. acerosa contained 18 components viz; tetradecane, 5-Octadecene, (E)-, tetradecanoic acid, neophytadiene, 2-pentadecanone, 6,10,14-trimethyl-, cyclododecanol, 2-dodecenal, hexadecanoic acid, phytol, 9-octadecenoic acid, hexadecenoic acid, z-11-, octadecanoic acid, benzoic acid, 2,3,5-triiodo-, cholesta-4,6-dien-3-ol, androst-16-en-3-one <5-alpha->, cholest-5-en-3-ol, Cholestan-3-ol, Ergosta-5, 22-dien-3-ol.
Table 7 Identification of phytocompounds from ethyl acetate extracts of S. wightii, S. ilicifolium and G. acerosa
S.No (Peak #)
|
Compound name
|
R.Time
|
Area%
|
Base m/z
|
SW
|
CYCLOPROPANE, NONYL-
|
8.533
|
7.44
|
55.10
|
Decane
|
8.687
|
3.60
|
57.10
|
Neodene
|
12.365
|
7.89
|
55.05
|
1-HEXADECANOL
|
15.996
|
6.21
|
55.05
|
Phytol acetate
|
16.809
|
11.93
|
68.10
|
1-Octadecyne
|
17.533
|
4.43
|
57.10
|
n-Hexadecanoic acid
|
18.851
|
21.17
|
60.05
|
Capraldehyde
|
18.942
|
3.40
|
57.10
|
Caprylaldehyde
|
19.075
|
6.28
|
73.10
|
Nonyl acetate
|
19.217
|
3.21
|
60.85
|
Neodene
|
19.344
|
7.87
|
55.05
|
Eicosane
|
19.440
|
4.23
|
57.10
|
Caproleic acid
|
21.677
|
4.36
|
55.05
|
Diphenylcyclopropane
|
30.423
|
3.91
|
95.45
|
THIADIAZOLE
|
31.259
|
4.07
|
134.90
|
SI
|
Docosane-1,2-diol, isopropylidene deriv
|
5.075
|
7.57
|
50.05
|
Capric acid
|
5.317
|
7.64
|
60.40
|
1-TRIDECENE
|
8.537
|
10.92
|
55.05
|
3-Tetradecene, (Z)-
|
12.361
|
12.66
|
55.10
|
Hendecane
|
12.500
|
5.03
|
57.10
|
5-OCTADECENE, (E)-
|
16.000
|
7.19
|
55.05
|
Phytol acetate
|
16.811
|
7.73
|
68.10
|
OCTADECANOIC ACID
|
18.932
|
17.98
|
57.10
|
Cinnamyl alcohol <alpha-amyl->
|
19.183
|
8.19
|
71.20
|
cis-2-Methyl-7-octadecene
|
19.351
|
9.26
|
57.15
|
Ethyl homovanillate, TMS derivative
|
28.858
|
5.83
|
73.05
|
GA
|
TETRADECANE
|
8.691
|
0.84
|
57.10
|
TETRADECANE
|
12.500
|
0.45
|
57.05
|
5-Octadecene, (E)-
|
14.214
|
0.27
|
55.05
|
TETRADECANE
|
14.352
|
4.86
|
57.05
|
TETRADECANOIC ACID
|
15.517
|
2.04
|
60.00
|
Neophytadiene
|
16.808
|
1.88
|
68.10
|
2-Pentadecanone, 6,10,14-trimethyl-
|
16.906
|
2.23
|
58.05
|
Cyclododecanol
|
17.531
|
0.65
|
81.05
|
2-DODECENAL
|
18.188
|
0.65
|
57.10
|
HEXADECANOIC ACID
|
19.162
|
44.76
|
60.05
|
Phytol
|
21.250
|
3.24
|
71.05
|
9-OCTADECENOIC ACID
|
21.688
|
3.22
|
55.05
|
Hexadecenoic acid, Z-11-
|
21.742
|
1.50
|
55.05
|
OCTADECANOIC ACID
|
22.023
|
1.92
|
55.05
|
BENZOIC ACID, 2,3,5-TRIIODO-
|
29.371
|
3.61
|
341.90
|
CHOLESTA-4,6-DIEN-3-OL
|
31.347
|
1.40
|
366.20
|
Androst-16-en-3-one <5-alpha->
|
33.638
|
0.87
|
55.05
|
CHOLEST-5-EN-3-OL
|
34.100
|
23.70
|
55.05
|
Cholestan-3-ol
|
34.183
|
1.18
|
55.05
|
Ergosta-5,22-dien-3-ol
|
34.544
|
0.73
|
55.10
|