Taylor CA, Braza D, Rice JB, Dillingham T. The incidence of peripheral nerve injury in extremity trauma. Am. J. Phys. Med. Rehabil. 2008;87(5): 381-385; doi: 10.1097/PHM.0b013e31815e6370.
Campbell WW. Evaluation and management of peripheral nerve injury. Clin Neurophysiol. 2008;119(9):1951-1965; doi: 10.1016/j.clinph.2008.03.018.
DeFrancesco-Lisowitz A, Lindborg JA, Niemi JP, Zigmond RE. The neuroimmunology of degeneration and regeneration in the peripheral nervous system. Neuroscience. 2015; 302:174-203; doi: 10.1016/j.neuroscience.2014.09.027.
Venereau E, Ceriotti C, Bianchi ME. DAMPs from cell death to new life. Front. Immunol. 2015;6:422; doi: 10.3389/fimmu.2015.00422.
Jessen KR, Mirsky R, Lloyd AC. Schwann cells: development and role in nerve repair. Cold Spring Harb. Perspect. Biol. 2015;7:a020487; doi: 10.1101/cshperspect.a020487.
Brushart TM. Nerve Repair. Oxford University Press; 2011.
Evans PJ, Midha R, Mackinnon SE. The peripheral nerve allograft: a comprehensive review of regeneration and neuroimmunology. Prog. Neurobiology. 1994;43:187-233, doi: 10.1016/0301-0082(94)90001-9.
Moreau A, Varey E, Anegon I, Cuturi MC. Effector mechanisms of rejection. Cold Spring Harb Perspect. Med. 2013;3:a015461; doi: 10.1101/cshperspect.a015461.
Land WG. Emerging role of innate immunity in organ transplantation Part I: evolution of innate immunity and oxidative allograft injury. Transplantation Reviews. 2012;26: 60-72; doi: 10.1016/j.trre.2011.05.001.
Murphy K, Weaver C. Janeway’s Immunobiology. 9th ed. Garland Science; 2017.
Mika SE, Stepnowski P. Current methods of the analysis of immunosuppressive agents in clinical materials: A review. J. Pharm. Biomed. Anal. 2016;127:207–231; doi: 10.1016/j.jpba.2016.01.059.
Sachanandani NF, Pothula A, Tung TH. Nerve Gaps. Plast. Reconstr. Surg. 2014;133(2):313-319; doi: 10.1097/01.prs.0000436856.55398.0f.
Jiang H, Wynn C, Pan F, Ebbs A, Erickson LM, Kobayashi M. Tacrolimus and cyclosporine differ in their capacity to overcome ongoing allograft rejection as a result of their differential abilities to inhibit interleukin-10 production. Transplantation. 2002;73(11):1808-1817; doi: 10.1097/00007890-200206150-00019.
Mackinnon SE, Doolabh VB, Novak CB, Trulock EP. Clinical outcome following nerve allograft transplantation. Plast. Reconstr. Surg. 2001;107(6):1419-1429; doi: 10.1097/00006534-200105000-00016.
Bittner GD, Sengelaub DR, Trevino RC, Peduzzi JD, Mikesh M, Ghergherehchi CL, et al. The curious ability of PEG-fusion technologies to restore lost behaviors after nerve severance. J. Neurosci. Res. 2016;94:207-230; doi: 10.1002/jnr.23685.
Mikesh M, Ghergherehchi CL, Hastings RL, Ali A, Jagannath K, Sengelaub DR, et al. Polyethylene glycol solutions rapidly restore and maintain axonal continuity, neuromuscular structures, and behaviors lost after sciatic nerve transections in female rats. J. Neurosci. Res. 2018;96(7):1223-1242; doi: 10.1002/jnr.24225.
Mikesh M, Ghergherehchi CL, Rahesh S, Jagannath K, Ali A, Sengelaub DR, et al. Polyethylene glycol treated allografts not tissue matched nor immunosuppressed rapidly repair sciatic nerve gaps, maintain neuromuscular junctions, and restore voluntary behaviors in female rats. J. Neurosci. Res. 2018;96(7):1243-1264; doi: 10.1002/jnr.24227.
Bittner GD, Keating CP, Kane JR, Britt JM, Spaeth CS, Fan JD, et al. Rapid, effective, and long-lasting recovery produced by microsutures, methylene blue, and polyethylene glycol after completely cutting rat sciatic nerves. J Neurosci Res. 2012;90:967-980; doi: 10.1002/jnr.23023.
Smith TA, Ghergherehchi CL, Mikesh M, Tucker HO, Bittner GD. Polyethylene glycol-fusion repair of sciatic allografts in female rats achieve immunotolerance via attenuated innate and adaptive responses. J. Neurosci. Res. 2020 – In press.
Ansselin AD, Pollard JD. Immunopathological factors in peripheral nerve allograft rejection: quantification of lymphocyte invasion and major histocompatibility complex expression. J. Neurol. Sci. 1990;96:75-88; doi: 10.1016/0022-510x(90)90058-u.
Pollard JD, Fitzpatrick L. An Ultrastructural comparison of peripheral nerve allografts and autografts. Acta neuropath. 1973;23:152-165; doi: 10.1007/bf00685769.
Ghergherehchi CL, Mikesh M, Sengelaub DR, Jackson DM, Smith T, Nguyen J et al. Polyethylene glycol (PEG) and other bioactive solutions with neurorraphy for rapid and dramatic repair of peripheral nerve lesions by PEG-fusion. J. Neurosci. Methods. 2019;314:1-12; doi: 10.1016/j.jneumeth.2018.12.015.
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12): 550; doi: 10.1186/s13059-014-0550-8.
Su G, Morris JH, Demchak B, Bader GD. Biological network exploration with Cytoscape 3. Curr. Protoc. Bioinformatics. 2014;47:13.1-24; doi: 10.1002/0471250953.bi0813s47.
Maere S, Heymans K, Kuiper M. BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics. 2005; 21(16):3448-3449; doi: 10.1093/bioinformatics/bti551.
Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 2017;45(D1): D353–D361; doi: 10.1093/nar/gkw1092.
Mitchell AL, Attwood TK, Babbitt PC, Blum M, Bork P, Bridge A, et al. InterPro in 2019: improving coverage, classification and access to protein sequence annotations. Nucleic Acids Res. 2019;47(D1):D351-D360; doi: 10.1093/nar/gky1100.
Huang DW, Sherman BT, Tan Q, Collins JR, Alvord WG, Roayaei J, et al. The DAVID Gene Functional Classification Tool: a novel biological module-centric algorithm to functionally analyze large gene lists. Genome Biol. 2007;8(9):R183; doi: 10.1186/gb-2007-8-9-r183.
Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;Jan; 47:D607-613; doi: 10.1093/nar/gky1131.
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods. 2001;25:402-408; doi: 10.1006/meth.2001.1262.
Wojno EDT, Hunter CA, Stumhofer JS. The immunobiology of the interleukin-12 family: room for discovery. Immunity. 2019;50(4):P851-870; doi: 10.1016/j.immuni.2019.03.011.
Arenas-Ramirez N, Woytschak J, Boyman O. Interleukin-2: Biology, Design and Application. Trends in Immunology. 2015;36(12):763-777; doi: 10.1016/j.it.2015.10.003.
Schroder K, Hertzog PJ, Ravasi T, Hume DA. Interferon-γ: an overview of signals, mechanisms and functions. J. Leukocyte Biol. 2004;75:163-189; doi: 10.1189/jlb.0603252.
Stettner M, Lohmann B, Wolffram K, Weinberger JP, Dehmel T, Hartung HP, et al. Interleukin-17 impedes Schwann cell-mediated myelination. J. Neuroinflammation. 2014;11:63; doi: 10.1186/1742-2094-11-63.
Schmidt A, Oberle N, Krammer PH. Molecular mechanisms of Treg-mediated T cell suppression. Front. Immunol. 2012;3(51): 1-20; doi: 10.3389/fimmu.2012.00051.
Wan YY. GATA3: a master of many trades in immune regulation. Trends in Immunology. 2014;35(6):233-242; doi: 10.1016/j.it.2014.04.002.
Murray PJ. Macrophage polarization. Annu. Rev. Physiol. 2017;79:541-566;
doi: 10.1146/annurev-physiol-022516-034339.
Chistiakov DA, Killingsworth MC, Myasoedova VA, Orekhov AN, Bobryshev YC. CD68/macrosialin: not just a histochemical marker. Laboratory Investigation. 2017;97:4-13; doi: 10.1038/labinvest.2016.116.
Pittelli M, Cavone L, Lapucci A, Oteri C, Felici R, Niccolai E, et al. Nicotinamide phosphoribosyltransferase (NAMPT) activity is essential for survival of resting lymphocytes. Immunol. Cell Biol. 2014;92(2):191-199; doi: 10.1038/icb.2013.85.
Yanagisawa H, Schluterman MK, Brekken RA. Fibulin-5, an integrin-binding matricellular protein: its function in development and disease. J. Cell Commun. Signal. 2009; 3(3-4):337-347; doi: 10.1007/s12079-009-0065-3.
Maruyama M, Hattori A, Goto Y, Ueda M, Maeda M, Fujiwara H, et al. Laeverin/aminopeptidase Q, a novel bestatin-sensitive leucine aminopeptidase belonging to the M1 family of aminopeptidases. J. Biol. Chem. 2007;282(28):20088-20096; doi: 10.1074/jbc.M702650200.
Feinberg K, Eshed-Eisenbach Y, Frechter S, Amor V, Salomon D, Sabanay H, et al. A Glial Signal Consisting of Gliomedin and NrCAM Clusters Axonal Na+ Channels during the Formation of Nodes of Ranvier. Neuron. 2010;65(4):490-502; doi: 10.1016/j.neuron.2010.02.004.
Caputo S, Bellone M. Osteopontin and the immune system: another brick in the wall. Cell. Mol. Immunol. 2018;15(4):405-407; doi: 10.1038/cmi.2017.94.
Engeland K. Cell cycle arrest through indirect transcriptional repression by p53: I have a DREAM. Cell Death Different. 2018;25:114-132; doi: 10.1038/cdd.2017.172.
Hayashi S, Inoue Y, Kiyonari H, Abe T, Misaki K, Moriguchi H, et al. Protocadherin-17 mediates collective axon extension by recruiting actin regulator complexes to interaxonal contacts. Dev. Cell. 2014;30(6):673-687; doi: 10.1016/j.devcel.2014.07.015.
Takada Y, Ye X, Simon S. The integrins. Genome Biology. 2007;8(5):215; doi: 10.1186/gb-2007-8-5-215.
Gilliam DT, Menon V, Bretz NP, Pruszak J. The CD24 surface antigen in neural development and disease. Neurobiol. Dis. 2017;99:133-144; doi: 10.1016/j.nbd.2016.12.011.
Barkal AA, Brewer RE, Markovic M, Kowarsky M, Barkal SA, Zaro BW, et al. CD24 signalling through macrophage Siglec-10 is a new target for cancer immunotherapy. Nature. 2019;572(7769):392-396; doi: 10.1038/s41586-019-1456-0.
Calabro NE, Barrett A, Chamorro-Jorganes A, Tam S, Kristofik NJ, Xing H, et al. Thrombospondin-2 regulates extracellular matrix production, LOX levels, and cross-linking via downregulation of miR-29. Matrix Biol. 2019;82:71-85; doi: 10.1016/j.matbio.2019.03.002.
Rosini S, Pugh N, Bonna AM, Hulmes DJS, Farndale RW, Adams JC. Thrombospondin-1 promotes matrix homeostasis by interacting with collagen and lysyl oxidase precursors and collagen cross-linking sites. Science Signaling. 2018;11(532):eaar2566; doi: 10.1126/scisignal.aar2566.
Miller MW, Kaur S, Ivins-O'Keefe K, Roberts DD. Thrombospondin-1 is a CD47-dependent endogenous inhibitor of hydrogen sulfide signaling in T cell activation. Matrix Biology. 2013;32(6):316-324; doi: 10.1016/j.matbio.2013.02.009.
Lamy L, Foussat A, Brown EJ, Bornstein P, Ticchioni M, Bernard A. Interactions between CD47 and Thrombospondin reduce inflammation. J. Immunol. 2007;178:5930-5939; doi: 10.4049/jimmunol.178.9.5930.
Castellanos JR, Purvis IJ, Labak CM, Guda MR, Tsung AJ, Velpula KK, et al. B7-H3 role in the immune landscape of cancer. Am. J. Clin. Exp. Immunol. 2017;6(4):66-75.
Ueno T, Yeung MY, McGrath M, Yang S, Zaman N, Snawder B, et al. Intact B7-H3 signaling promotes allograft prolongation through preferential suppression of Th1 effector responses. Eur. J. Immunol. 2012;42(9):2343-2353; doi: 10.1002/eji.201242501.
Hüser L, Sachindra S, Granados K, Federico A, Larribère L, Novak D, et al. SOX2-mediated upregulation of CD24 promotes adaptive resistance toward targeted therapy in melanoma. Int. J. Cancer. 2018;143(12):3131-3142; doi: 10.1002/ijc.31609.
Seidel JA, Otsuka A, Kabashima K. Anti-PD-1 and Anti-CTLA-4 Therapies in Cancer: Mechanisms of Action, Efficacy, and Limitations. Front. Oncol. 2018;8(86) 1-14; doi: 10.3389/fonc.2018.00086.
Xu H, Cheung IY, Guo HF, Cheung NK. MicroRNA miR-29 modulates expression of immunoinhibitory molecule B7-H3: potential implications for immune based therapy of human solid tumors. Cancer Res. 2009;69(15):6275-6281; doi: 10.1158/0008-5472.CAN-08-4517.
Thuillier R, Giraud S, Favreau F, Goijon JM, Desurmont T, Eugene M, et al. Improving long-term outcome in allograft transplantation: role of ionic composition and polyethylene glycol. Transplantation. 2011;91:605-614; doi: 10.1097/TP.0b013e3182090fa3.
Kleene R, Yang H, Kutsche M, Schachner M. The Neural Recognition Molecule L1 Is a Sialic Acid-binding Lectin for CD24, Which Induces Promotion and Inhibition of Neurite Outgrowth. J. Biol. Chem. 2001;276:21656-21663; doi: 10.1074/jbc.M101790200.
Parks WC, Wilson CL, Lopez-Boado YS. Matrix metalloproteinases as modulators of inflammation and innate immunity. Nature Rev. Immunol. 2004;4:617-629;
doi: 10.1038/nri1418.
Gonzalez-Perez F, Udina E, Navarro X. Extracellular matrix components in peripheral nerve regeneration. Int. Rev. Neurobiol. 2013;108:257-275; doi: 10.1016/B978-0-12-410499-0.00010-1.
Koopmans G, Hasse B, Sinis N. Chapter 19: The role of collagen in peripheral nerve repair. Int. Rev. Neurobiol. 2009;87:363-379; doi: 10.1016/S0074-7742(09)87019-0.
Vaughan-Thomas A, Young RD, Phillips AC, Victor CD. Characterization of Type XI Collagen-Glycosaminoglycan Interactions. J. Biol. Chem. 2001;276(7): 5303–5309; doi: 10.1074/jbc.M008764200.
Salmon H, Franciszkiewicz K, Damotte D, Dieu-Nosjean MC, Validire P, Trautmann A, et al. Matrix architecture defines the preferential localization and migration of T cells into the stroma of human lung tumors. J. Clin. Invest. 2012;122(3):899-910; doi: 10.1172/JCI45817.
Kuczek DE, Larsen AMH, Thorseth ML, Carretta M, Kalvisa A, Siersbæk MS, et al. Collagen density regulates the activity of tumor-infiltrating T cells. J. Immunother. Cancer. 7(1):68; doi: 10.1186/s40425-019-0556-6.
Ludigs K, Seguin-Estevez Q, Lemeille S, Ferrero I, Rota G, Chelbi S, et al. NLRC5 Exclusively Transactivates MHC Class I and Related Genes through a Distinctive SXY Module. PLoS Genetics. 2015;11(3):e1005088; doi: 10.1371/journal.pgen.1005088.
Masternak K, Muhlethaler-Mottet A, Villard J, Zufferey M, Steimle V, Reith W. CIITA is a transcriptional coactivator that is recruited to MHC class II promoters by multiple synergistic interactions with an enhanceosome complex. Genes and Dev. 2000;14:1156-1166.
Benes P, Vetvicka V, Fusek M. Cathepsin D - many functions of one aspartic protease. Crit. Rev. Oncol. Hematol. 2008;68(1):12-28; doi: 10.1016/j.critrevonc.2008.02.008.
Turk V, Stoka V, Vasiljeva O, Renko M, Sun T, Turk B, et al. Cysteine cathepsins: From structure, function and regulation to new frontiers. Biochim. Biophys. Acta. 2012;1824(1):68-88; doi: 10.1016/j.bbapap.2011.10.002.
Beaujouin M, Prébois C, Derocq D, Laurent-Matha V, Masson O, Pattingre S, et al. Pro-cathepsin D interacts with the extracellular domain of the β chain of LRP1 and promotes LRP1-dependent fibroblast outgrowth. J. Cell Sci. 2010;123(Pt 19):3336-3346; doi: 10.1242/jcs.070938.
Moss CX, Villadangos JA, Watts C. Destructive potential of the aspartyl protease cathepsin D in MHC class II-restricted antigen processing. Eur. J. Immunol. 2005;35(12):3442-3451; doi: 10.1002/eji.200535320.
Petersen SC, Luo R, Liebscher I, Giera S, Jeong SJ, Mogha A, et al. The adhesion GPCR GPR126 has distinct, domain-dependent functions in Schwann cell development mediated by interaction with laminin-211. Neuron. 2015;85(4):755-769; doi: 10.1016/j.neuron.2014.12.057.
Bacallao K, Monje PV. Requirement of cAMP signaling for Schwann cell differentiation restricts the onset of myelination. PLoS One. 2015;10(2):e0116948; doi: 10.1371/journal.pone.0116948.
Li G, Harton JA, Zhu X, Ting JPY. Downregulation of CIITA Function by Protein Kinase A (PKA)-Mediated Phosphorylation: Mechanism of Prostaglandin E, Cyclic AMP, and PKA Inhibition of Class II Major Histocompatibility Complex Expression in Monocytic Lines. Mol. Cell Biol. 2001;21(14):4626-4635; doi: 10.1128/MCB.21.14.4626-4635.2001.
Bombeiro AL, Thomé R, Nunes SLO, Moreira BM, Verinaud L, de Oliveira ALR. MHC-I and PirB Upregulation in the Central and Peripheral Nervous System following Sciatic Nerve Injury. PLoS One. 2016;11(10):e0165185; doi: 10.1371/journal.pone.0161463.
Lisak RP, Bealmear B, Benjamins JA. Schwann cell differentiation inhibits interferon-gamma induction of expression of major histocompatibility complex class II and intercellular adhesion molecule-1. J. Neuroimmunol. 2016;295:93-99; doi: 10.1016/j.jneuroim.2016.03.013.