1. Azziz, R. et al. Polycystic ovary syndrome. Nat. Rev. Dis. Primers. 2, 16057 (2016).
2. Teede, H., Deeks, A. & Moran, L. Polycystic ovary syndrome: a complex condition with psychological, reproductive and metabolic manifestations that impacts on health across the lifespan. BMC Med. 8, 41 (2010).
3. Costello, M. F. et al. Evidence summaries and recommendations from the international evidence-based guideline for the assessment and management of polycystic ovary syndrome: assessment and treatment of infertility. Hum. Reprod. open 2019, hoy021 (2019).
4. Hayden, C. GnRH analogues: Applications in assisted reproductive techniques. Eur. J. Endocrinol. 159, S17–S25 (2008).
5. Sirait, B., Wiweko, B., Jusuf, A. A., Iftitah, D. & Muharam, R. Oocyte Competence Biomarkers Associated With Oocyte Maturation: A Review. Front. cell Dev. Biol. 9, 710292 (2021).
6. Sugimura, S. et al. Transcriptomic signature of the follicular somatic compartment surrounding an oocyte with high developmental competence. Sci. Rep. 7, 6815 (2017).
7. Da Broi, M. G. et al. Influence of follicular fluid and cumulus cells on oocyte quality: clinical implications. J. Assist. Reprod. Genet. 35, 735–751 (2018).
8. Baskind, N. E., Orsi, N. M. & Sharma, V. Impact of Exogenous Gonadotropin Stimulation on Circulatory and Follicular Fluid Cytokine Profiles. Int. J. Reprod. Med. 2014, 218769 (2014).
9. Wu, Y.-T. et al. Preliminary proteomic analysis on the alterations in follicular fluid proteins from women undergoing natural cycles or controlled ovarian hyperstimulation. J. Assist. Reprod. Genet. 32, 417–427 (2015).
10. von Wolff, M. et al. Gonadotrophin stimulation for in vitro fertilization significantly alters the hormone milieu in follicular fluid: a comparative study between natural cycle IVF and conventional IVF. Hum. Reprod. 29, 1049–1057 (2014).
11. Jancar, N., Virant-Klun, I. & Bokal, E. V. Serum and follicular endocrine profile is different in modified natural cycles than in cycles stimulated with gonadotropin and gonadotropin-releasing hormone antagonist. Fertil. Steril. 92, 2069–2071 (2009).
12. von Wolff, M., Eisenhut, M., Stute, P. & Bersinger, N. A. Gonadotropin stimulation in in vitro fertilisation reduces follicular fluid hormone concentrations and disrupts their quantitative association with cumulus cell mRNA. Reprod. Biomed. Online (2021) doi:10.1016/j.rbmo.2021.08.018.
13. Jancar, N., Virant-Klun, I., Osredkar, J. & Vrtacnik Bokal, E. Apoptosis, reactive oxygen species and follicular anti-Müllerian hormone in natural versus stimulated cycles. Reprod. Biomed. Online 16, 640–648 (2008).
14. Rey, R. & Picard, J. Y. Embryology and endocrinology of genital development. Baillieres. Clin. Endocrinol. Metab. 12, 17–33 (1998).
15. Pigny, P., Jonard, S., Robert, Y. & Dewailly, D. Serum anti-Mullerian hormone as a surrogate for antral follicle count for definition of the polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 91, 941–945 (2006).
16. Pigny, P. et al. Elevated serum level of anti-mullerian hormone in patients with polycystic ovary syndrome: relationship to the ovarian follicle excess and to the follicular arrest. J. Clin. Endocrinol. Metab. 88, 5957–5962 (2003).
17. Abu-Fakher, B., Al-Quobaili, F. & Alhalabi, M. Follicular fluid antimullerian hormone (AMH) does not predict IVF outcomes in polycystic ovary syndrome patients. Middle East Fertil. Soc. J. 18, 110–114 (2013).
18. Das, M., Gillott, D. J., Saridogan, E. & Djahanbakhch, O. Anti-Mullerian hormone is increased in follicular fluid from unstimulated ovaries in women with polycystic ovary syndrome. Hum. Reprod. 23, 2122–2126 (2008).
19. Du, J. et al. Abnormalities of early folliculogenesis and serum anti-Müllerian hormone in chinese patients with polycystic ovary syndrome. J. Ovarian Res. 14, 36 (2021).
20. Bhide, P. et al. Each small antral follicle in ovaries of women with polycystic ovary syndrome produces more antimüllerian hormone than its counterpart in a normal ovary: an observational cross-sectional study. Fertil. Steril. 103, 537–541 (2015).
21. Pellatt, L. et al. Granulosa cell production of anti-Müllerian hormone is increased in polycystic ovaries. J. Clin. Endocrinol. Metab. 92, 240–245 (2007).
22. Artimani, T. et al. Estrogen and progesterone receptor subtype expression in granulosa cells from women with polycystic ovary syndrome. Gynecol. Endocrinol. 31, 379–383 (2015).
23. Pierre, A. et al. Dysregulation of the Anti-Müllerian Hormone System by Steroids in Women With Polycystic Ovary Syndrome. J. Clin. Endocrinol. Metab. 102, 3970–3978 (2017).
24. Jakimiuk, A. J., Weitsman, S. R., Yen, H.-W., Bogusiewicz, M. & Magoffin, D. A. Estrogen receptor alpha and beta expression in theca and granulosa cells from women with polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 87, 5532–5538 (2002).
25. Pierre, A. et al. Loss of LH-induced down-regulation of anti-Müllerian hormone receptor expression may contribute to anovulation in women with polycystic ovary syndrome. Hum. Reprod. 28, 762–769 (2013).
26. Penzias, A. et al. Testing and interpreting measures of ovarian reserve: a committee opinion. Fertil. Steril. 114, 1151–1157 (2020).
27. Lin, C. et al. The Value of Anti-Müllerian Hormone in the Prediction of Spontaneous Pregnancy: A Systematic Review and Meta-Analysis. Front. Endocrinol. (Lausanne). 12, 1260 (2021).
28. Kaya, C., Pabuccu, R. & Satıroglu, H. Serum antimüllerian hormone concentrations on day 3 of the in vitro fertilization stimulation cycle are predictive of the fertilization, implantation, and pregnancy in polycystic ovary syndrome patients undergoing assisted reproduction. Fertil. Steril. 94, 2202–2207 (2010).
29. Guo, Y., Liu, S., Hu, S., Li, F. & Jin, L. High Serum Anti-Müllerian Hormone Concentrations Are Associated With Poor Pregnancy Outcome in Fresh IVF/ICSI Cycle but Not Cumulative Live Birth Rate in PCOS Patients. Front. Endocrinol. (Lausanne). 12, 523 (2021).
30. Tal, R., Seifer, C. M., Khanimov, M., Seifer, D. B. & Tal, O. High serum Antimullerian hormone levels are associated with lower live birth rates in women with polycystic ovarian syndrome undergoing assisted reproductive technology. Reprod. Biol. Endocrinol. 18, 20 (2020).
31. Wafaa, Y., El-Seheimy, M. & Fares, T. Prediction of intracytoplasmic sperm injection outcome in patients with polycystic ovary syndrome using follicular antimullerian. Azhar Assiut Med. J. 10, 223–241 (2013).
32. Pabuccu, R., Kaya, C., Cağlar, G. S., Oztas, E. & Satiroglu, H. Follicular-fluid anti-Mullerian hormone concentrations are predictive of assisted reproduction outcome in PCOS patients. Reprod. Biomed. Online 19, 631–637 (2009).
33. Arabzadeh, S., Hossein, G., Rashidi, B. H., Hosseini, M. A. & Zeraati, H. Comparing serum basal and follicular fluid levels of anti-Müllerian hormone as a predictor of in vitro fertilization outcomes in patients with and without polycystic ovary syndrome. Ann. Saudi Med. 30, 442–447 (2010).
34. Wiweko, B. et al. Correlation between follicular fluid AMH levels and numbers of oocytes in polycystic ovarian syndrome patients undergoing in vitro fertilization. J. Phys. Conf. Ser. 1073, 32047 (2018).
35. Chen, Y. et al. Predicting the outcome of different protocols of in vitro fertilization with anti-Muüllerian hormone levels in patients with polycystic ovary syndrome. J. Int. Med. Res. 45, 1138–1147 (2017).
36. Kadoura, S., Alhalabi, M. & Nattouf, A. H. Effect of Flexible GnRH antagonist and long GnRH agonist protocols on follicular fluid levels of PlGF, AMH, oocyte’s morphology, and other IVF/ICSI outcomes in polycystic ovary syndrome women. PREPRINT (Version 1). (2022) doi:10.21203/rs.3.rs-1445309/v1.
37. The Rotterdam ESHRE/ASRM-Sponsored PCOS Consensus Workshop Group. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome. Fertil. Steril. 81, 19–25 (2004).
38. Ferraretti, A. P. et al. ESHRE consensus on the definition of ‘poor response’ to ovarian stimulation for in vitro fertilization: the Bologna criteria. Hum. Reprod. 26, 1616–1624 (2011).
39. Huber, M., Hadziosmanovic, N., Berglund, L. & Holte, J. Using the ovarian sensitivity index to define poor, normal, and high response after controlled ovarian hyperstimulation in the long gonadotropin-releasing hormone-agonist protocol: suggestions for a new principle to solve an old problem. Fertil. Steril. 100, 1270–1276 (2013).
40. Alpha Scientists in Reproductive Medicine and ESHRE Special Interest Group of Embryology. The Istanbul consensus workshop on embryo assessment: proceedings of an expert meeting. Hum. Reprod. 26, 1270–1283 (2011).
41. Navot, D., Bergh, P. A. & Laufer, N. Ovarian hyperstimulation syndrome in novel reproductive technologies: prevention and treatment. Fertil. Steril. 58, 249–261 (1992).
42. Golan, A. & Weissman, A. Update on prediction and management of OHSS. A modern classification of OHSS. Reprod. Biomed. Online 19, 28–32 (2009).
43. The Practice Committee of the American Society for Reproductive Medicine. Ovarian hyperstimulation syndrome. Fertil. Steril. 90, S188–S193 (2008).
44. Zegers-Hochschild, F. et al. The international glossary on infertility and fertility care, 2017. Hum. Reprod. 32, 1786–1801 (2017).
45. Andersen, C. Y. et al. Concentrations of AMH and inhibin-B in relation to follicular diameter in normal human small antral follicles. Hum. Reprod. 25, 1282–1287 (2010).
46. Kedem, A. et al. Anti-Müllerian hormone (AMH) downregulation in late antral stages is impaired in PCOS patients. A study in normo-ovulatory and PCOS patients undergoing in vitro maturation (IVM) treatments. Gynecol. Endocrinol. 29, 651–656 (2013).
47. Fanchin, R. et al. Per-follicle measurements indicate that anti-müllerian hormone secretion is modulated by the extent of follicular development and luteinization and may reflect qualitatively the ovarian follicular status. Fertil. Steril. 84, 167–173 (2005).
48. Jeppesen, J. V et al. Which follicles make the most anti-Müllerian hormone in humans? Evidence for an abrupt decline in AMH production at the time of follicle selection. Mol. Hum. Reprod. 19, 519–527 (2013).
49. Durlinger, A. L. L. et al. Anti-Müllerian Hormone Inhibits Initiation of Primordial Follicle Growth in the Mouse Ovary. Endocrinology 143, 1076–1084 (2002).
50. Durlinger, A. L. et al. Control of primordial follicle recruitment by anti-Müllerian hormone in the mouse ovary. Endocrinology 140, 5789–5796 (1999).
51. Nilsson, E., Rogers, N. & Skinner, M. K. Actions of anti-Mullerian hormone on the ovarian transcriptome to inhibit primordial to primary follicle transition. Reproduction 134, 209–221 (2007).
52. Durlinger, A. L. L. et al. Anti-Müllerian Hormone Attenuates the Effects of FSH on Follicle Development in the Mouse Ovary. Endocrinology 142, 4891–4899 (2001).
53. Pellatt, L. et al. Anti-Müllerian hormone reduces follicle sensitivity to follicle-stimulating hormone in human granulosa cells. Fertil. Steril. 96, 1246–1251.e1 (2011).
54. Grossman, M. P., Nakajima, S. T., Fallat, M. E. & Siow, Y. Müllerian-inhibiting substance inhibits cytochrome P450 aromatase activity in human granulosa lutein cell culture. Fertil. Steril. 89, 1364–1370 (2008).
55. Zhang, Y. et al. Effect of anti-Mullerian hormone in culture medium on quality of mouse oocytes matured in vitro. PLoS One 9, e99393 (2014).
56. Velásquez, A., Mellisho, E., Castro, F. O. & Rodríguez-Álvarez, L. Effect of BMP15 and/or AMH during in vitro maturation of oocytes from involuntarily culled dairy cows. Mol. Reprod. Dev. 86, 209–223 (2019).
57. Bedenk, J., Jančar, N., Vrtačnik-Bokal, E. & Virant-Klun, I. In vitro maturation of human immature (GV) oocytes after controlled ovarian hormonal stimulation with recombinant AMH in the maturation medium. Hum. Reprod. 36, (2021).
58. Mamsen, L. S. et al. High Variability of Molecular Isoforms of AMH in Follicular Fluid and Granulosa Cells From Human Small Antral Follicles. Front. Endocrinol. (Lausanne). 12, 617523 (2021).
59. Convissar, S. et al. Regulation of AMH by oocyte-specific growth factors in human primary cumulus cells. Reproduction 154, 745–753 (2017).
60. Campbell, B. K., Clinton, M. & Webb, R. The role of anti-Müllerian hormone (AMH) during follicle development in a monovulatory species (sheep). Endocrinology 153, 4533–4543 (2012).
61. Carlsson, I. B. et al. Anti-Müllerian hormone inhibits initiation of growth of human primordial ovarian follicles in vitro. Hum. Reprod. 21, 2223–2227 (2006).
62. Schmidt, K. L. T., Kryger-Baggesen, N., Byskov, A. G. & Andersen, C. Y. Anti-Müllerian hormone initiates growth of human primordial follicles in vitro. Mol. Cell. Endocrinol. 234, 87–93 (2005).
63. Thomas, F. H., Telfer, E. E. & Fraser, H. M. Expression of anti-Mullerian hormone protein during early follicular development in the primate ovary in vivo is influenced by suppression of gonadotropin secretion and inhibition of vascular endothelial growth factor. Endocrinology 148, 2273–2281 (2007).
64. Fang, Y. et al. Vascular endothelial growth factor induces anti‑Müllerian hormone receptor 2 overexpression in ovarian granulosa cells of in vitro fertilization/intracytoplasmic sperm injection patients. Mol. Med. Rep. 13, 5157–5162 (2016).
65. Kadoura, S., Alhalabi, M. & Nattouf, A. H. Conventional GnRH antagonist protocols versus long GnRH agonist protocol in IVF/ICSI cycles of polycystic ovary syndrome women: a systematic review and meta-analysis. Sci. Rep. 12, 4456 (2022).
66. Carmeliet, P. et al. Synergism between vascular endothelial growth factor and placental growth factor contributes to angiogenesis and plasma extravasation in pathological conditions. Nat. Med. 7, 575–583 (2001).
67. Bender, H. R., Trau, H. A. & Duffy, D. M. Placental Growth Factor is required for ovulation, luteinization, and angiogenesis in primate ovulatory follicles. Endocrinology 159, 710–722 (2018).
68. Hou, L., Taylor, R. N., Shu, Y., Johnston-MacAnanny, E. B. & Yalcinkaya, T. M. Vascular endothelial growth factor (VEGF) and placental growth factor (PLGF) directly correlate with ovarian follicle size in women undergoing in vitro fertilization (IVF). Fertil. Steril. 102, e256 (2014).
69. Dinsdale, N. L. & Crespi, B. J. Endometriosis and polycystic ovary syndrome are diametric disorders. Evol. Appl. 14, 1693–1715 (2021).
70. Fabjan, T. et al. Antimüllerian hormone and oxidative stress biomarkers as predictors of successful pregnancy in polycystic ovary syndrome, endometriosis and tubal infertility factor. Acta Chim. Slov. 67, 885–895 (2020).
71. Fallat, M. E., Siow, Y., Marra, M., Cook, C. & Carrillo, A. Müllerian-inhibiting substance in follicular fluid and serum: a comparison of patients with tubal factor infertility, polycystic ovary syndrome, and endometriosis. Fertil. Steril. 67, 962–965 (1997).
72. Falconer, H. et al. IVF outcome in women with endometriosis in relation to tumour necrosis factor and anti-Müllerian hormone. Reprod. Biomed. Online 18, 582–588 (2009).
73. Li, H. W. R., Robertson, D. M., Burns, C. & Ledger, W. L. Challenges in Measuring AMH in the Clinical Setting. Front. Endocrinol. (Lausanne). 12, 620 (2021).
74. Punchoo, R. & Bhoora, S. Variation in the Measurement of Anti-Müllerian Hormone – What Are the Laboratory Issues? Front. Endocrinol. (Lausanne). 12, 1062 (2021).