A Pretargeted Imaging Strategy for EGFR Positive Colorectal Carcinoma via the Modulation of Tz-radioligand Pharmacokinetics
Objective: Previously, we successfully developed a pretargeted imaging strategy (Atezolizumab-TCO/99mTc-HYNIC-PEG11-Tz), which is a powerful tool for evaluating Programmed Cell Death Ligand-1 (PD-L1) expression in xenograft mice tumor models. However, the surplus unclicked 99mTc-HYNIC-PEG11-Tz is cleared somewhat sluggishly through the intestines. This is certainly not an ideal situation for imaging for colorectal cancer (CRC). In order to shift the excretion of the Tz-radioligand to the renal system, we have sought to develop a novel Tz-radioligand by adding a polypeptide linker between HYNIC and PEG11.
Methods: Pretargeted molecular probes 99mTc-HYNIC-Polypeptide-PEG11-Tz and Cetuximab-TCO were synthesized. The stability of 99mTc-HYNIC-Polypeptide-PEG11-Tz was evaluated in vitro, and its blood pharmacokinetic test was performed in vivo. In vitro ligation reactivity of 99mTc-HYNIC-Polypeptide-PEG11-Tz towards Cetuximab-TCO was tested. The biodistribution and imaging of 99mTc-HYNIC-Polypeptide-PEG11-Tz was performed to observe the clear pathway of this novel Tz-radioligand. Pretargeted biodistribution of three different accumulation intervals was performed to determine the optimal pretargeted interval time. Comparison of pretargeted (Cetuximab-TCO 48 h/99mTc-HYNIC-PEG11-Tz 6 h) and (Cetuximab-TCO 48 h/99mTc-HYNIC-Polypeptide-PEG11-Tz 6 h) imagings was performed to show the effect of the two Tz-radioligands with different excretion pathway on tumor imaging.
Results: 99mTc-HYNIC-Polypeptide-PEG11-Tz showed favorable in vitro stability and rapid blood clearance in mice. SEC-HPLC revealed almost complete reaction between Cetuximab-TCO and 99mTc-HYNIC-Polypeptide-PEG11-Tz in vitro, with the 8:1 Tz-to-mAb reaction providing a conversion yield of 87.83 ± 3.27%. The biodistribution and imaging of 99mTc-HYNIC-Polypeptide-PEG11-Tz demonstrated that the Tz-radioligand was cleared through kidneys. After allowing 24 h, 48 h and 72 h for accumulation of Cetuximab-TCO in HCT116 tumor, pretargeted biodistribution revealed the tumor-to-blood ratio was 0.83 ± 0.13, 1.40 ± 0.31, and 1.15 ± 0.21, respectively. Both pretargeted (Cetuximab-TCO 48 h/99mTc-HYNIC-PEG11-Tz 6 h) and (Cetuximab-TCO 48 h/99mTc-HYNIC-Polypeptide-PEG11-Tz 6 h) imaging delineated the HCT116 tumor clearly. However, pretargeted imaging strategy using Cetuximab-TCO/99mTc-HYNIC-Polypeptide-PEG11-Tz could be used for diagnosing CRC since the surplus unclicked 99mTc-HYNIC-Polypeptide-PEG11-Tz is cleared through urinary system and produces low abdominal uptake background.
Conclusion: We developed a novel pretargeted imaging strategy (Cetuximab-TCO/99mTc-HYNIC-Polypeptide-PEG11-Tz) for imaging CRC since the surplus unclicked 99mTc-HYNIC-Polypeptide-PEG11-Tz produces low abdominal uptake background, which broadens the application scope of pretargeted imaging strategy.
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
This is a list of supplementary files associated with this preprint. Click to download.
Posted 14 Apr, 2020
A Pretargeted Imaging Strategy for EGFR Positive Colorectal Carcinoma via the Modulation of Tz-radioligand Pharmacokinetics
Posted 14 Apr, 2020
Objective: Previously, we successfully developed a pretargeted imaging strategy (Atezolizumab-TCO/99mTc-HYNIC-PEG11-Tz), which is a powerful tool for evaluating Programmed Cell Death Ligand-1 (PD-L1) expression in xenograft mice tumor models. However, the surplus unclicked 99mTc-HYNIC-PEG11-Tz is cleared somewhat sluggishly through the intestines. This is certainly not an ideal situation for imaging for colorectal cancer (CRC). In order to shift the excretion of the Tz-radioligand to the renal system, we have sought to develop a novel Tz-radioligand by adding a polypeptide linker between HYNIC and PEG11.
Methods: Pretargeted molecular probes 99mTc-HYNIC-Polypeptide-PEG11-Tz and Cetuximab-TCO were synthesized. The stability of 99mTc-HYNIC-Polypeptide-PEG11-Tz was evaluated in vitro, and its blood pharmacokinetic test was performed in vivo. In vitro ligation reactivity of 99mTc-HYNIC-Polypeptide-PEG11-Tz towards Cetuximab-TCO was tested. The biodistribution and imaging of 99mTc-HYNIC-Polypeptide-PEG11-Tz was performed to observe the clear pathway of this novel Tz-radioligand. Pretargeted biodistribution of three different accumulation intervals was performed to determine the optimal pretargeted interval time. Comparison of pretargeted (Cetuximab-TCO 48 h/99mTc-HYNIC-PEG11-Tz 6 h) and (Cetuximab-TCO 48 h/99mTc-HYNIC-Polypeptide-PEG11-Tz 6 h) imagings was performed to show the effect of the two Tz-radioligands with different excretion pathway on tumor imaging.
Results: 99mTc-HYNIC-Polypeptide-PEG11-Tz showed favorable in vitro stability and rapid blood clearance in mice. SEC-HPLC revealed almost complete reaction between Cetuximab-TCO and 99mTc-HYNIC-Polypeptide-PEG11-Tz in vitro, with the 8:1 Tz-to-mAb reaction providing a conversion yield of 87.83 ± 3.27%. The biodistribution and imaging of 99mTc-HYNIC-Polypeptide-PEG11-Tz demonstrated that the Tz-radioligand was cleared through kidneys. After allowing 24 h, 48 h and 72 h for accumulation of Cetuximab-TCO in HCT116 tumor, pretargeted biodistribution revealed the tumor-to-blood ratio was 0.83 ± 0.13, 1.40 ± 0.31, and 1.15 ± 0.21, respectively. Both pretargeted (Cetuximab-TCO 48 h/99mTc-HYNIC-PEG11-Tz 6 h) and (Cetuximab-TCO 48 h/99mTc-HYNIC-Polypeptide-PEG11-Tz 6 h) imaging delineated the HCT116 tumor clearly. However, pretargeted imaging strategy using Cetuximab-TCO/99mTc-HYNIC-Polypeptide-PEG11-Tz could be used for diagnosing CRC since the surplus unclicked 99mTc-HYNIC-Polypeptide-PEG11-Tz is cleared through urinary system and produces low abdominal uptake background.
Conclusion: We developed a novel pretargeted imaging strategy (Cetuximab-TCO/99mTc-HYNIC-Polypeptide-PEG11-Tz) for imaging CRC since the surplus unclicked 99mTc-HYNIC-Polypeptide-PEG11-Tz produces low abdominal uptake background, which broadens the application scope of pretargeted imaging strategy.
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11