1 Global Burden of Disease Cancer, C. et al. Global, Regional, and National Cancer Incidence, Mortality, Years of Life Lost, Years Lived With Disability, and Disability-Adjusted Life-Years for 29 Cancer Groups, 1990 to 2017: A Systematic Analysis for the Global Burden of Disease Study. JAMA Oncol 5, 1749-1768, doi:10.1001/jamaoncol.2019.2996 (2019).
2 Siegel, R. L., Miller, K. D. & Jemal, A. Cancer statistics, 2020. CA Cancer J Clin 70, 7-30, doi:10.3322/caac.21590 (2020).
3 Zheng, M. Classification and Pathology of Lung Cancer. Surg Oncol Clin N Am 25, 447-468, doi:10.1016/j.soc.2016.02.003 (2016).
4 Kris, M. G. et al. Using multiplexed assays of oncogenic drivers in lung cancers to select targeted drugs. JAMA 311, 1998-2006, doi:10.1001/jama.2014.3741 (2014).
5 Aris, V. M. et al. Noise filtering and nonparametric analysis of microarray data underscores discriminating markers of oral, prostate, lung, ovarian and breast cancer. BMC Bioinformatics 5, 185, doi:10.1186/1471-2105-5-185 (2004).
6 Fridman, W. H., Pages, F., Sautes-Fridman, C. & Galon, J. The immune contexture in human tumours: impact on clinical outcome. Nat Rev Cancer 12, 298-306, doi:10.1038/nrc3245 (2012).
7 Becht, E., Giraldo, N. A., Dieu-Nosjean, M.-C., Sautès-Fridman, C. & Fridman, W. H. Cancer immune contexture and immunotherapy. Current Opinion in Immunology 39, 7-13, doi:10.1016/j.coi.2015.11.009 (2016).
8 Boissel, S. et al. Genomic study of severe fetal anomalies and discovery of GREB1L mutations in renal agenesis. Genet Med 20, 745-753, doi:10.1038/gim.2017.173 (2018).
9 De Tomasi, L. et al. Mutations in GREB1L Cause Bilateral Kidney Agenesis in Humans and Mice. Am J Hum Genet 101, 803-814, doi:10.1016/j.ajhg.2017.09.026 (2017).
10 Schrauwen, I. et al. De novo variants in GREB1L are associated with non-syndromic inner ear malformations and deafness. Hum Genet 137, 459-470, doi:10.1007/s00439-018-1898-8 (2018).
11 Hu, S., Yin, X., Zhang, G. & Meng, F. Identification of DNA methylation signature to predict prognosis in gastric adenocarcinoma. J Cell Biochem, doi:10.1002/jcb.28450 (2019).
12 Klutstein, M., Nejman, D., Greenfield, R. & Cedar, H. DNA Methylation in Cancer and Aging. Cancer Res 76, 3446-3450, doi:10.1158/0008-5472.CAN-15-3278 (2016).
13 Yamashita, K., Hosoda, K., Nishizawa, N., Katoh, H. & Watanabe, M. Epigenetic biomarkers of promoter DNA methylation in the new era of cancer treatment. Cancer Sci 109, 3695-3706, doi:10.1111/cas.13812 (2018).
14 Oja, A. E. et al. Functional Heterogeneity of CD4+ Tumor-Infiltrating Lymphocytes With a Resident Memory Phenotype in NSCLC. Frontiers in Immunology 9, doi:10.3389/fimmu.2018.02654 (2018).
15 Bruno, T. C. et al. Antigen-Presenting Intratumoral B Cells Affect CD4(+) TIL Phenotypes in Non-Small Cell Lung Cancer Patients. Cancer Immunol Res 5, 898-907, doi:10.1158/2326-6066.CIR-17-0075 (2017).
16 Kamphorst, A. O. & Ahmed, R. CD4 T-cell immunotherapy for chronic viral infections and cancer. Immunotherapy 5, 975-987, doi:10.2217/imt.13.91 (2013).
17 Swain, S. L., McKinstry, K. K. & Strutt, T. M. Expanding roles for CD4(+) T cells in immunity to viruses. Nat Rev Immunol 12, 136-148, doi:10.1038/nri3152 (2012).
18 Hiraoka, K. et al. Concurrent infiltration by CD8+ T cells and CD4+ T cells is a favourable prognostic factor in non-small-cell lung carcinoma. Br J Cancer 94, 275-280, doi:10.1038/sj.bjc.6602934 (2006).
19 Bos, R. & Sherman, L. A. CD4+ T-cell help in the tumor milieu is required for recruitment and cytolytic function of CD8+ T lymphocytes. Cancer Res 70, 8368-8377, doi:10.1158/0008-5472.CAN-10-1322 (2010).
20 Nakanishi, Y., Lu, B., Gerard, C. & Iwasaki, A. CD8(+) T lymphocyte mobilization to virus-infected tissue requires CD4(+) T-cell help. Nature 462, 510-513, doi:10.1038/nature08511 (2009).
21 Rakhra, K. et al. CD4(+) T cells contribute to the remodeling of the microenvironment required for sustained tumor regression upon oncogene inactivation. Cancer Cell 18, 485-498, doi:10.1016/j.ccr.2010.10.002 (2010).
22 Ohaegbulam, K. C., Assal, A., Lazar-Molnar, E., Yao, Y. & Zang, X. Human cancer immunotherapy with antibodies to the PD-1 and PD-L1 pathway. Trends Mol Med 21, 24-33, doi:10.1016/j.molmed.2014.10.009 (2015).
23 Patel, S. P. & Kurzrock, R. PD-L1 Expression as a Predictive Biomarker in Cancer Immunotherapy. Mol Cancer Ther 14, 847-856, doi:10.1158/1535-7163.MCT-14-0983 (2015).
24 Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102, 15545-15550, doi:10.1073/pnas.0506580102 (2005).
25 Charoentong, P. et al. Pan-cancer Immunogenomic Analyses Reveal Genotype-Immunophenotype Relationships and Predictors of Response to Checkpoint Blockade. Cell Rep 18, 248-262, doi:10.1016/j.celrep.2016.12.019 (2017).
26 Bindea, G. et al. Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer. Immunity 39, 782-795, doi:10.1016/j.immuni.2013.10.003 (2013).
27 Li, T. et al. TIMER: A Web Server for Comprehensive Analysis of Tumor-Infiltrating Immune Cells. Cancer Res 77, e108-e110, doi:10.1158/0008-5472.CAN-17-0307 (2017).