Ali, S., Deming, T., Zhen, T. X., Malak, H., Kalisa, W., Shi, S., Jiahua, Z. 2019a. Characterization of drought monitoring events through MODIS and TRMM-based DSI and TVDI over South Asia during 2001–2017. Environmental Science and Pollution Research. doi.org/10.1007/s11356-019-06500-4.
Ali, S., Zhen, T. X., Henchiri, M., Wilson. K., Jiahua, Z. 2019b. Studying of drought phenomena and vegetation trends over South Asia from 1990 to 2015 by using AVHRR and NASA’s MERRA data. Environmental Science and Pollution Research. doi.org/10.1007/s11356-019-07221-4.
Alston, Julian M, & Pardey, Philip G. 2014. Agricultural r&d, food prices, poverty and malnutrition redux. staff papers.
Andres, L., Salas,W.A., Skole, D., 1994. Fourier analysis of multi-temporal AVHRR data applied to a land cover classification. Int. J. Remote Sens. 15, 1115–1121.
Aronoff, S., 1985. The minimum accuracy value as an index of classification accuracy. Photogrammetric Engineering and Remote Sensing, 51, 99-111.
Baudron, P., Alonso-Sarría, F., García-Aróstegui, J.L., Cánovas-García, F., Martínez-Vicente, D., Moreno-Brotóns, J., 2013. Identifying the origin of groundwater samples in a multi-layer aquifer system with random Forest classification. J. Hydrol. 499, 303–315.
Bloom, D.E., Rosenberg, L., 2011. The Future of South Asia: Population Dynamics, Economic Prospects, and Regional Coherence. WDA-Forum, University of St. Gallen. http://www.cepf.net.
Breiman, L., 2001. Random forests. Mach. Learn. 45, 5–32.
Channan, S., Collins, K., Emanuel, W., 2014. Global Mosaics of the Standard MODIS Land Cover Type Data. University of Maryland and the Pacific Northwest National Laboratory, College Park, Maryland, USA.
Congalton, R. G., & Green, K. 2009. Assessing the accuracy of remotely sensed data: Principles and practices. Lewis Publishers.
Czaplewski, R. L., 1992. Misclassification bias in areal estimates. Photo-grammetric Engineering and Remote Sensing, 58, 189-192.
Dahinden, C., 2011. An improved random forest approach with application to the performance prediction challenge datasets. Hands-on Pattern Recognition, Challenges in Machine Learning. 1, pp. 223–230.
Dappen, P., 2003. Using Satellite Imagery to Estimate Irrigated Land: A Case Study in Scotts Bluff and Kearney Counties. Center of Advanced Land Management Information Techonologies. University of Nebraska-Lincoln, NE,USA.
Denisko, D., Hoffman, M.M., 2018. Classification and interaction in random forests. Proc. Natl. Acad. Sci. U. S. A. 115, 1690–1692.
Dhiraj Goswami, Kun-han Tsai, Mark Kassab, & Takeo Kobayashi. 2006. At-speed testing with timing exceptions and constraints-case studies.
Di Gregorio, A. 2005. Land cover classification system (LCCS), classification concepts and user manual, software version 2. Rome: Food and Agriculture Organization (FAO) of the United Nations.
Du, J., Shu, J., Xinjie, J., Jiaerheng, A., Xiong, S., He, P., Liu, W. 2015. Analysis on spatio-temporal trends and drivers in vegetation growth during recent decades in Xinjing, China. Int J Appl Earth Obs Geoinf 38: 216–228
El Saleous, N., 2005. An extended AVHRR 8-km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data. Int. J. Remote Sens. 26, 4485–4498.
Foody, G. M. 2002. Status of land cover classification accuracy assessment. Remote Sensing of Environment, 80, 185e201.
Friedl,M.A., Sulla-Menashe, D., Tan, B., Schneider, A., Ramankutty, N., Sibley, A., Huang, X., 2010. MODIS collection 5 global land cover: algorithm refinements and characterization of new datasets. Remote Sens. Environ. 114, 168–182.
Fu, Q., Zhou, Z. Q., Li, T. X., Liu, D., Hou, R. J., Cui, S., Yan, P. R. 2018. Spatiotemporal 10 characteristics of droughts and floods in northeastern China and their impacts on agriculture. Stoch. Environ. Res. Risk Assess. (10), 2913–2931.
He, Y., Lee, E., Timothy, A. W. 2017. A time series of annual land use and land cover maps of China from1982 to 2013 generated using AVHRR GIMMS NDVI3g data. Remote Sensing of Environment 199: 201–217.
Henchiri, M., Ali, S., Bouajila, E., Wilson, K., Sha, Z., Yun, B. 2019. Monitoring land cover change detection with NOAA-AVHRR and MODIS remotely sensed data in the North and West of Africa from 1982 to 2015. Environmental Science and Pollution Research. doi.org/10.1007/s11356-019-07216-1.
Herold, D., Mayaux, P., Woodcock, C. E., Baccini, A., & Schmullius, C. 2008. Some challenges in global land cover mapping: an assessment of agreement and accuracy in existing 1 km datasets. Remote Sensing of Environment, 112, 2538e2556.
Holben, B.N., 1986. Characteristics of maximum-value composite images from temporal AVHRR data. Int. J. Remote Sens. 7, 1417–1434.
Huang, S. Z., Ming, B., Huang, Q., Leng, G.Y., Hou, B. B. 2017. A Case Study on a Combination NDVI Forecasting Model Based on the Entropy Weight Method. Water Resour. Manag. 34, 3667–3681.
Ibrakhimov, m., Khamzina, A., Forkutsa, I., Paluasheva, G., Lamers, J. P. A., Tischbein, B., et al. 2007. Groundwater table and salinity: spatial and temporal distribution and influence on soil salinization in Khorezm region (Uzbekistan, Aral sea basin). Irrigation and Drainage Systems, 21, 219e236.
IUCN, International Union for Conservation of Nature. 2010. The Kazakh Steppe e Conserving the world’s largest dry steppe region. http://www.iucn.org/about/ union/secretariat/offices/europe/resources/?5640/Kazakh-Action-Plan-for- Grasslands Accessed 10.02.12.
James, M., Kalluri, S.N., 1994. The pathfinder AVHRR land data set: an improved coarse resolution data set for terrestrial monitoring. Int. J. Remote Sens. 15, 3347–3363.
Jin, J., Zhang, N. G. 2019. Temporal and spatial evolution of drought index in Tibet. Soil and water conservation research (05), 377-380 doi:10.13869/j.cnki.rswc.2019.05.054.
Jung, M., Henkel, K., Herold, M., & Churkina, G. 2006. Exploiting synergies of global land cover products for carbon cycle modeling. Remote Sensing of Environment, 101, 534e553.
Keith, D. J. , Schaeffer, B. A. , Lunetta, R. S. , Jr, R. W. G. , Rocha, K. , & Cobb, D. J. 2014. Remote sensing of selected water-quality indicators with the hyperspectral imager for the coastal ocean (hico) sensor. International journal of remote sensing, 35(9-10), 2927-2962.
Klein, I., Ursula, G., Claudia, K. 2012. Regional land cover mapping and change detection in Central Asia using MODIS time-series. Applied Geography; 35, 219e234.
Kotsiantis, S. B. 2007. Supervised machine learning: a review of classification techniques. Informatica, 31, 249e268.
Laurance, W.F., Albernaz, A.K., Schroth, G., Fearnside, P.M., Bergen, S., Venticinque, E.M., Da Costa, C. 2002. Predictors of deforestation in the Brazilian Amazon. J. Biogeogr. 29, 737–748.
Lawrence, P.J., Chase, T.N., 2007. Representing a new MODIS consistent land surface in the Community Land Model (CLM 3.0). J. Geophys. Res. Biogeosci. 112 G01023.
Liaw, A.,Wiener,M., Breiman, L., Cutler, A., 2009. Package “Randomforest”. https://cran.rproject.org/web/packages/randomForest/randomForest.pdf Accessed 16. 04. 12.
Linke, J., McDermid, G.J., Laskin, D.N., McLane, A.J., Pape, A., Cranston, J., Hall-Beyer, M., Franklin, S.E. 2009. A disturbance-inventory framework for flexible and reliable landscape monitoring. Photogramm. Eng. Remote Sens. 75, 981–995.
Liu, H., Zhang, M., Lin, Z., Xu, X. 2018. Spatial heterogeneity of the relationship between vegetation dynamics and climate change and their driving forces at multiple time scales in southwest china. Agricultural and Forest Meteorology, s256–257, 10-21.
Liu, J., Heiskanen, J., Aynekulu, E., Maeda, E.E., Pellikka, P.K. 2016. Land cover characterization inWest Sudanian Savannas using seasonal features from annual Landsat time series. Remote Sens. 8, 365.
Lunetta, R.S., Knight, J.F., Ediriwickrema, J., Lyon, J.G., Worthy, L.D. 2006. Land-cover change detection using multi-temporal MODIS NDVI data. Remote Sens. Environ. 105, 142–154.
Mertens, B., Lambin, E. 2000. Land-cover-change trajectories in southern Cameroon. Ann. Assoc. Am. Geogr. 90 (3), 467-494.
Meyer, W. B., & Turner, I. I.,B. L. 1992. Human population growth and global land use/land cover change. Annual Review of Ecology and Systematics, 23, 39e61.
Muhammad, S., Niu, Z., Wang, L., Aablikim, A., Hao, P., Wang, C., 2015. Crop classification based on time series MODIS EVI and ground observation for three adjoining years in Xinjiang. Spectrosc. Spectr. Anal. 35, 1345–1350.
Na, L., Haixia, L., Tian, x. W., Yi, L., Yi, L., Xinguo, C., Xiao, t. H. 2020. Impact of climate change on cotton growth and yields in Xinjiang, China. Field Crops Research 247(2020) 107590.
Olofsson, P., Foody, G.M., Herold, M., Stehman, S.V., Woodcock, C.E., Wulder, M.A. 2014. Good practices for estimating area and assessing accuracy of land change. Remote Sens. Environ. 148, 42-57.
Olson, D. M., Dinerstein, E., Wikramanayake, E. D., Burgess, N. D., Powell, G. N., Underwood, M. C. 2001. Terrestrial eco-regions of the world: a new map of life on earth. BioScience, 51, 933e938.
Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. 2014. Package "nlme". https://cran.r-project. org/web/packages/nlme/nlme.pdf Accessed 16. 12. 02.
Pinzon, J.E., Tucker, C.J. 2014. A non-stationary 1981–2012 AVHRR NDVI3g time series. Remote Sens. 6, 6929–6960.
Piper, S. E., 1983. The evaluation of the spatial accuracy of computer classification. In: Proceedings of the 1983 Machine Processing of Remotely Sensed Data Symposium. West Lafayette: Purdue University, 303- 310.
Pontius, R.G., Millones, M. 2011. Death to Kappa: birth of quantity disagreement and allocation disagreement for accuracy assessment. Int. J. Remote Sens. 32, 4407-4429.
Propastin, P. A., Kappas, M., & Muratova, N. R. 2008a. Inter-annual changes in vegetation activities and their relationship to temperature and precipitation in Central Asia from 1982 to 2003. Journal of Environmental Informatics, 12(2), 75e87.
Propastin, P. A., Kappas, M., & Muratova, N. R. 2008b. A remote sensing based monitoring system for discrimination between climate and human-induced vegetation change in Central Asia. Management of Environmental Quality: An International Journal, 19(5), 579e596.
Reddy, C.S., Pasha, S.V., Satish, K.V., Saranya, K.R.L., Jha, C.S., Krishna Murthy, Y.V.N., 2017. Quantifying nationwide land cover and historical changes in forests of Nepal (1930–2014): implications on forest fragmentation. Biodivers. Conserv. http://dx. doi.org/10.1007/s10531-017-1423-8.
Rodell, M., Chen, J. , Kato, H. , Nigro, F. J. , & Al., E. 2012. Grace and water loss from indo-ganga basin. Journal of the Geological Society of India.
Rodriguez-Galiano, V.F., Ghimire, B., Rogan, J., Chica-Olmo, M., Rigol-Sanchez, J.P. 2012. An assessment of the effectiveness of a random forest classifier for land-cover classification. ISPRS J. Photogramm. Remote Sens. 67, 93–104.
Rosenfield, G. H., & Fitzpatrick-Lins, K. 1986. A coefficient of agreement as a measure of thematic classification accuracy. Photo-grammetric Engineering and Remote Sensing, 52, 223-227.
Rouse Jr., J.W., Haas, R., Schell, J., Deering, D. 1974. Monitoring Vegetation Systems in the Great Plains with ERTS. Proceedings of the Thrid ERTS Symposium, NASA, Washington, DC, USA, pp. 309–317.
Running, S.W., Loveland, T.R., Pierce, L.L., 1994. A vegetation classification logic based on remote sensing for use in global biogeochemical models. Ambio 23, 77–81.
Sabins, J., Lulla, K. 2007. Remote Sensing: Principles and Interpretation. 3rd edition. Waveland, Illinois.
Schneider, A., Friedl,M.A., Potere, D. 2009. A new map of global urban extent from MODIS satellite data. Environ. Res. Lett. 4, 044003.
Schulz, J.J., Cayuela, L., Echeverria, C., Salas, J., Benayas, J.M.R. 2010. Monitoring land cover change of the dry-land forest landscape of Central Chile (1975–2008). Appl. Geogr. 30 (3), 436–447.
Tapia-Armijos, M.F., Homeier, J., Espinosa, C.I., Leuschner, C., de la Cruz, M. 2015. Deforestation and forest fragmentation in South Ecuador since the 1970s – losing a hotspot of biodiversity. PLoS One 10 (9), e0133701. http://dx.doi.org/10.1371/ journal.pone.0133701.
TEl Saleous, N. 2005. An extended AVHRR 8-km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data. Int. J. Remote Sens. 26, 4485–4498.
Tian, F., Fensholt, R., Verbesselt, J., Grogan, K., Horion, S., Wang, Y. 2015. Evaluating temporal consistency of long-term global NDVI datasets for trend analysis. Remote Sens. Environ. 163, 326–340.
Townshend, J., Justice, C., Li,W., Gurney, C., McManus, J., 1991. Global land cover classification by remote sensing: present capabilities and future possibilities. Remote Sens. Environ. 35, 243–255.
Tucker, C.J., Pinzon, J.E., Brown, M.E., Slayback, D.A., Pak, E.W., Mahoney, R., Vermote, E.F.,
United Nations, 2009. World population prospects: The 2008 revision population database. http://esa.un.org/wup2009/unup/index.asp, Accessed date: 3 October 2015.
Warrens, M.J. 2015. Properties of the quantity disagreement and the allocation disagreement. Int. J. Remote Sens. 36, 1439-1446.
Wulder, M.A., White, J.C., Loveland, T.R., Woodcock, C.E., Belward, A.S., Cohen, W.B., Fosnight, G., Shaw, J., Masek, J.G., Roy, D.P. 2016. The global Land-sat archive: status, consolidation, and direction. Remote Sens. Environ.
Yao, T.D., Chen, F. H., Cui, P. et al. 2017. From Tibetan Plateau to Third Pole and Pan-Third Pole. Bulletin of Chinese Academy of Sciences, 32, 924-931.
Yin, X. 2008. Analysis on the change of land use by remote sensing technology in Manas county. J. Shihezi Univ. (Nat. Sci.) 26, 402–406.
Yuan, F., Sawaya, K.E., Loeffelholz, B.C., Bauer, M.E. 2005. Land cover classification and change analysis of the Twin Cities (Minnesota) Metropolitan area by multi-temporal Land-sat remote sensing. Remote Sens. Environ. 98, 317-328.
Yuke, Z., 2019. Characterizing the spatio-temporal dynamics and variability in climate extremes over the Tibetan plateau during 1960–2012. J. Resour. Ecol. 10 (4), 397. https://doi.org/10.5814/j.issn.1674-764x.2019.04.007.
Zhang, J., Mu, Q., Huang, J. 2016. Assessing the remotely sensed drought severity index for agricultural drought monitoring and impact analysis in North China. Ecol Indic 63:296–309.