[1] Hartmann, W. K. Lunar 'cataclysm': A misconception? Icarus 24, 181-185 (1975).
[2] Hartmann, W. K. Reviewing 'terminal cataclysm': What does it mean? Workshop on Early Solar System Impact Bombardment, III, Lunar and Planetary Institute, Houston, Contribution 1826, 3003 (2015).
[3] Maas, R., Kinny, P. D., Williams, I. S., Froude, D. O. & Compston, W. The Earth's oldest known crust: A geochronological and geochemical study of 3900–4200 Ma old detrital zircons from Mt. Narryer and Jack Hills, Western Australia. Geochim. Cosmochim. Acta
56(3), 1281-1300 (1992).
[4] Mojzsis, S., Harrison, T. & Pidgeon, R. Oxygen-isotope evidence from ancient zircons for liquid water at the Earth's surface 4,300 Myr ago. Nature 409, 178-181 (2001).
[5] Cavosie, A. J., Wilde, S. A., Liu, D., Weiblen, P. W. & Valley, J. W. Internal zoning and U–Th–Pb chemistry of Jack Hills detrital zircons: a mineral record of early Archean to Mesoproterozoic (4348–1576 Ma) magmatism. Precambrian Res. 135(4), 251-279 (2004).
[6] Lowman, P. D. Crustal evolution in silicate planets: Implications for the origin of continents. J. Geol. 84(1), 1-26 (1976).
[7] Isachsen, Y. W. Large circles on the Earth’s surface. Nature 276, 535 (1978).
[8] Kellaway, G. A. & Durrance, E. M. Circular structures of large scale and great age on the Earth's surface. Nature 273, 75 (1978).
[9] Kelly, A. O. & Dachille, F. Target: Earth, 263 pp. (Target Earth, Carlsbad, CA & Pensacola, FL, 1953).
[10] Earth Impact Database http://www.passc.net/EarthImpactDatabase/index.html (2022).
[11] Grieve, R. A. F. & Cintala, M. J. Impact Melting on Venus: Some Considerations for the Nature of the Cratering Record. Icarus 114(1), 68-79 (1995).
[12] French, B. M. Traces of catastrophe: A handbook of shock-metamorphic effects, Terrestrial Meteorite Impact Structures, Lunar and Planetary Institute, Contribution 954, 1-120 (1998).
[13] Melosh, H. J. Can impacts induce volcanic eruptions? Catastrophic Events & Mass Extinctions: impacts and beyond, Lunar and Planetary Institute, Contribution 1053, 141-142 (2000).
[14] Ryder, G., Koeberl, C. & Mojzsis, S. J. Heavy bombardment of the Earth at ~3.85 Ga: the search for petrographic and geochemical evidence. In Origin of the Earth and Moon (eds. Canup, R. M. & Righter, K.) 474-492 (University of Arizona, 2000).
[15] Manske, L., Wünnemann, K., Güldemeister, K. & Güldemeister, N. Impact-induced melting by Giant Impact Events. Geophys. Res. Abstr. 20, EGU-2018-15883-3 2018 (2018).
[16] Saul, J. M. Circular structures of large scale and great age on the Earth’s surface. Nature 271, 345-349 (1978).
[17] Byler, W. H. Circular Structures of Earth. ASP Technical Papers, American Society of Photogrammetry, 49th Annual Meeting, Washington, DC (A84-33326 15-43) 471-480 (1983).
[18] Byler, W. H. Evidence of large horizontal Earth movements. In International Basement Tectonics Association, Publication 7 (ed. Mason, R.) 33-49 (1992).
[19] Melosh, H. J. A schematic model of crater modification by gravity. J. Geophys. Res. 87, 371-380 (1982).
[20] NASA-JPL https://www2.jpl.nasa.gov/srtm/africa_radar_images.htm (2016).
[21] Kochemasov, G. G. The Congo Craton: An old impact structure? Lunar and Planetary Science Conference XIV, 377-378 (1983).
[22] O’Driscoll, E. S. T. & Campbell, I. B. Mineral deposits related to Australian continental ring and rift structures with some terrestrial and planetary analogies. Global Tectonics and Metallogeny 6(2), 83-101 (1996).
[23] Mardirosian, C. A. Map of mining districts and mineral deposits of Arizona (exclusive of oil and gas), 1:1,000,000 (Mineral Research Co., Albuquerque, NM, 1973).
[24] Jones, A. P., Price, G. D, Price, N. J., DeCarli, P. S. & Clegg, R. Impact induced melting and the development of large igneous provinces. Earth Planet. Sci. Lett. 202, 551-561 (2002).
[25] Grieve, R. A. F. & Cintala, M. J. An analysis of differential impact melt-crater scaling and implications for the terrestrial impact record. Meteoritics 27(5), 526-538 (1992).
[26] Burgener, J. A. Massive impact craters and basins on Earth: Regarding the Amazon as a 3500 km multi ring impact basin. Meteoritical Society, 76th Annual Meeting, Edmonton, Canada, Abstract 5051 (2013).
[27] Hoorn, C. et al. Amazonia through time: Andean uplift, climate change, landscape evolution and biodiversity. Science 330, 927-931 (2010).
[28] Saul, J. M. A Geologist Speculates,159 pp. (Les 3 Colonnes, Paris, 2014) ISBN: 978-2-37081-004-5
[29] Newton, H. & Jenney, W. P. Bird's eye view of the Black Hills to illustrate the geological structure. Geographical and Geological Survey of the Rocky Mountain Region (U.S.), Report on the Geology and Resources of the Black Hills of Dakota, with Atlas. Washington, Government Printing Office (1880).
[30] Burba, G. A. Middle-Urals Ring Structure, USSR: Definition, description, possible planetary analogues, Lunar and Planetary Science Conference XXII, Abstract 153 (1991).
[31] Burba, G. A. The geological evolution of the Ural Mountains: A supposed exposure to a giant Impact. Vernadsky/Brown Microsymposium 38, Abstract MS011 (2003).
[32] Trofimov, V. A. Deep CMP Seismic Survey of Oil and Gas Bearing Areas (in Russian). GEOS, Moscow, 202 pp., with 1:2,000,000 infolded map (2014). ISBN 978-5-89118-644-6
[33] Saul, J. M. Deep 'plugs' caught in continent-to-continent collisions, gemstones, deposits of metals, oil & gas. 35th International Geological Congress, Cape Town, Paper 149 (2016).
[34] Saul, J. M. Gemstone Deposits of Eastern Kenya and Tanzania Controlled by Ancient Meteorite Impacts and Continental Collision – an Exploration Model. Australian Gemmologist 28(1), (in press, 2022).
[35] Saul, J. M. Transparent gemstones and the most recent supercontinent cycle. Int. Geol. Rev, 60(7), 889-910 (2017).
[36] Zubovich, A. V. et al. GPS velocity field for the Tien Shan and surrounding regions. Tectonics 29(6), 23 pp. (2010). doi: 10.1029/2010TC002772
[37] Bendick, R. & Bilham, R. How perfect is the Himalayan arc? Geology 29(9), 791-794 (2001).
[38] Anon. Great Terrestrial Globe. Journal of the Society of Arts, XL(V), 85 (London, 1896).
[39] Ramaswamy S. Terrestrial Lessons: The Conquest of the World as Globe, 416 pp. (University of Chicago Press, 2017).
[40] Yakubchuk, A. The gyroscopic Earth and its role in supercontinent and metallogenic cycles. Ore Geol. Rev. 34(3), 387-398 (2008).
[41] Gold, T. Instability of the Earth’s axis of rotation. Nature 175, 526-529 (1955).
[42] Saul, J. M. Circular scars dating to the Earth's accretionary period. Energy Procedia 146, 12-16 (2018).
[43] Peters, S. E. & Gaines, R. R. Formation of the 'Great Unconformity' as a trigger for the Cambrian explosion. Nature 484, 363-366 (2012).
[44] Keller, C. B. et al. Neoproterozoic Glacial Origin of the Great Unconformity. Proceedings of the National Academy of Sciences, U.S.A. 116(4) (2019).
[45] Osinski, G. R. & Pierazzo, E. (eds.) Impact Cratering: processes and products, 316 pp.
(Wiley-Blackwell, 2013).
[46] Davies, G. F. On the emergence of plate tectonics. Geology 20(11), 963-966 (1992).
[47] Stern, R. J. When and how did plate tectonics begin? Theoretical and empirical considerations. Sci. Bull. 52(5), 578-591 (2007).
[48] Condie, K. C., Aster, R. C. & van Hunen, J. A. A great thermal divergence in the mantle beginning 2.5 Ga: Geochemical constraints from greenstone basalts and komatiites. Geosci. Front. (7)4, 543-553 (2016).
[49] Sobolev, S. V. & Brown, M. Surface erosion events controlled the evolution of plate tectonics on Earth. Nature 570, 52-57 (2019).
[50] Polosukhin, V. P. Traces of ancient intensive meteorite bombardment on Earth. Doklady Earth Sciences Section 260, 93-95 (1981), translated from Doklady Akademii Nauk SSSR 260(6), 1434-1437.
[51] Marvin, U. B., Impact, and its implications for geology. Global Catastrophes in Earth History, Topical Conference, Snowbird, Utah, LPI Contribution 673, 115-116 (1988).