1. Gregory A, Polster BJ, Hayflick SJ: Clinical and genetic delineation of neurodegeneration with brain iron accumulation. Journal of medical genetics 2009, 46(2):73-80.
2. Hayflick SJ, Westaway SK, Levinson B, Zhou B, Johnson MA, Ching KH, Gitschier J: Genetic, clinical, and radiographic delineation of Hallervorden-Spatz syndrome. The New England journal of medicine 2003, 348(1):33-40.
3. Levi S, Tiranti V: Neurodegeneration with Brain Iron Accumulation Disorders: Valuable Models Aimed at Understanding the Pathogenesis of Iron Deposition. Pharmaceuticals (Basel) 2019, 12(1).
4. Arber CE, Li A, Houlden H, Wray S: Review: Insights into molecular mechanisms of disease in neurodegeneration with brain iron accumulation: unifying theories. Neuropathology and applied neurobiology 2016, 42(3):220-241.
5. Levi S, Finazzi D: Neurodegeneration with brain iron accumulation: update on pathogenic mechanisms. Frontiers in pharmacology 2014, 5:99.
6. Schneider SA, Dusek P, Hardy J, Westenberger A, Jankovic J, Bhatia KP: Genetics and Pathophysiology of Neurodegeneration with Brain Iron Accumulation (NBIA). Current neuropharmacology 2013, 11(1):59-79.
7. Brunetti D, Dusi S, Morbin M, Uggetti A, Moda F, D'Amato I, Giordano C, d'Amati G, Cozzi A, Levi S et al: Pantothenate kinase-associated neurodegeneration: altered mitochondria membrane potential and defective respiration in Pank2 knock-out mouse model. Human molecular genetics 2012, 21(24):5294-5305.
8. Alvarez-Cordoba M, Fernandez Khoury A, Villanueva-Paz M, Gomez-Navarro C, Villalon-Garcia I, Suarez-Rivero JM, Povea-Cabello S, de la Mata M, Cotan D, Talaveron-Rey M et al: Pantothenate Rescues Iron Accumulation in Pantothenate Kinase-Associated Neurodegeneration Depending on the Type of Mutation. Molecular neurobiology 2019, 56(5):3638-3656.
9. Orellana DI, Santambrogio P, Rubio A, Yekhlef L, Cancellieri C, Dusi S, Giannelli SG, Venco P, Mazzara PG, Cozzi A et al: Coenzyme A corrects pathological defects in human neurons of PANK2-associated neurodegeneration. EMBO Mol Med 2016, 8(10):1197-1211.
10. Santambrogio P, Dusi S, Guaraldo M, Rotundo LI, Broccoli V, Garavaglia B, Tiranti V, Levi S: Mitochondrial iron and energetic dysfunction distinguish fibroblasts and induced neurons from pantothenate kinase-associated neurodegeneration patients. Neurobiology of disease 2015, 81:144-153.
11. Leonardi R, Zhang YM, Rock CO, Jackowski S: Coenzyme A: back in action. Progress in lipid research 2005, 44(2-3):125-153.
12. Alvarez-Cordoba M, Talaveron-Rey M, Villalon-Garcia I, Povea-Cabello S, Suarez-Rivero JM, Suarez-Carrillo A, Munuera-Cabeza M, Salas JJ, Sanchez-Alcazar JA: Down regulation of the expression of mitochondrial phosphopantetheinyl-proteins in pantothenate kinase-associated neurodegeneration: pathophysiological consequences and therapeutic perspectives. Orphanet journal of rare diseases 2021, 16(1):201.
13. Lambrechts RA, Schepers H, Yu Y, van der Zwaag M, Autio KJ, Vieira-Lara MA, Bakker BM, Tijssen MA, Hayflick SJ, Grzeschik NA et al: CoA-dependent activation of mitochondrial acyl carrier protein links four neurodegenerative diseases. EMBO Mol Med 2019, 11(12):e10488.
14. Beld J, Sonnenschein EC, Vickery CR, Noel JP, Burkart MD: The phosphopantetheinyl transferases: catalysis of a post-translational modification crucial for life. Nat Prod Rep 2014, 31(1):61-108.
15. Adzhubei I, Jordan DM, Sunyaev SR: Predicting functional effect of human missense mutations using PolyPhen-2. Curr Protoc Hum Genet 2013, Chapter 7:Unit7 20.
16. Zhou B, Westaway SK, Levinson B, Johnson MA, Gitschier J, Hayflick SJ: A novel pantothenate kinase gene (PANK2) is defective in Hallervorden-Spatz syndrome. Nature genetics 2001, 28(4):345-349.
17. Delgado RF, Sanchez PR, Speckter H, Then EP, Jimenez R, Oviedo J, Dellani PR, Foerster B, Stoeter P: Missense PANK2 mutation without "eye of the tiger" sign: MR findings in a large group of patients with pantothenate kinase-associated neurodegeneration (PKAN). J Magn Reson Imaging 2012, 35(4):788-794.
18. Campanella A, Privitera D, Guaraldo M, Rovelli E, Barzaghi C, Garavaglia B, Santambrogio P, Cozzi A, Levi S: Skin fibroblasts from pantothenate kinase-associated neurodegeneration patients show altered cellular oxidative status and have defective iron-handling properties. Human molecular genetics 2012, 21(18):4049-4059.
19. Dang TN, Bishop GM, Dringen R, Robinson SR: The putative heme transporter HCP1 is expressed in cultured astrocytes and contributes to the uptake of hemin. Glia 2010, 58(1):55-65.
20. Riemer J, Hoepken HH, Czerwinska H, Robinson SR, Dringen R: Colorimetric ferrozine-based assay for the quantitation of iron in cultured cells. Analytical biochemistry 2004, 331(2):370-375.
21. Alcocer-Gómez E, Garrido-Maraver J, Bullóna P, Marín-Aguilar F, Cotán D, Carrión AM, Alvarez-Suarez JM, Giampieri F, Sánchez-Alcazar JA, Battino M et al: Metformin and caloric restriction induce an AMPK-dependent restoration of mitochondrial dysfunction in fibroblasts from Fibromyalgia patients. Biochim Biophys Acta 2015, 1852(7):1257-1267.
22. Pap E, Drummen G, Winter V, Kooij T, Rijken P, Wirtz K, Kamp JO, Hage W, Post J: Ratio-fluorescence microscopy of lipid oxidation in living cells using C11-BODIPY(581/591). FEBS Letters 1999, 453(3):278-282.
23. Polster BJ, Yoon MY, Hayflick SJ: Characterization of the human PANK2 promoter. Gene 2010, 465(1-2):53-60.
24. Ekstrand MI, Falkenberg M, Rantanen A, Park CB, Gaspari M, Hultenby K, Rustin P, Gustafsson CM, Larsson NG: Mitochondrial transcription factor A regulates mtDNA copy number in mammals. Human molecular genetics 2004, 13(9):935-944.
25. Puigserver P, Spiegelman BM: Peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1 alpha): transcriptional coactivator and metabolic regulator. Endocrine reviews 2003, 24(1):78-90.
26. Wu Z, Puigserver P, Andersson U, Zhang C, Adelmant G, Mootha V, Troy A, Cinti S, Lowell B, Scarpulla RC et al: Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 1999, 98(1):115-124.
27. Rockfield S, Chhabra R, Robertson M, Rehman N, Bisht R, Nanjundan M: Links Between Iron and Lipids: Implications in Some Major Human Diseases. Pharmaceuticals 2018, 11(4).
28. Höhn A, Grune T: Lipofuscin: formation, effects and role of macroautophagy. Redox Biol 2013, 1(1):140-144.
29. Zhao T, Guo X, Sun Y: Iron Accumulation and Lipid Peroxidation in the Aging Retina: Implication of Ferroptosis in Age-Related Macular Degeneration. Aging Dis 2021, 12(2):529–551.
30. Frolova M, Surin A, Braslavski A, Vekshin N: Degradation of Mitochondria to Lipofuscin upon Heating and Illumination. Biophysics 2015, 60(6):1125-1131.
31. Hiltunen JK, Schonauer MS, Autio KJ, Mittelmeier TM, Kastaniotis AJ, Dieckmann CL: Mitochondrial fatty acid synthesis type II: more than just fatty acids. J Biol Chem 2009, 284(14):9011-9015.
32. Reed LJ: A trail of research from lipoic acid to alpha-keto acid dehydrogenase complexes. J Biol Chem 2001, 276(42):38329-38336.
33. Tsai CS, Burgett MW, Reed LJ: Alpha-keto acid dehydrogenase complexes. XX. A kinetic study of the pyruvate dehydrogenase complex from bovine kidney. J Biol Chem 1973, 248(24):8348-8352.
34. Perham RN: Swinging arms and swinging domains in multifunctional enzymes: catalytic machines for multistep reactions. Annu Rev Biochem 2000, 69:961-1004.
35. Zhou ZH, McCarthy DB, O'Connor CM, Reed LJ, Stoops JK: The remarkable structural and functional organization of the eukaryotic pyruvate dehydrogenase complexes. Proceedings of the National Academy of Sciences of the United States of America 2001, 98(26):14802-14807.
36. Rowland EA, Snowden CK, Cristea IM: Protein lipoylation: an evolutionarily conserved metabolic regulator of health and disease. Curr Opin Chem Biol 2018, 42:76-85.
37. Feng D, Witkowski A, Smith S: Down-regulation of mitochondrial acyl carrier protein in mammalian cells compromises protein lipoylation and respiratory complex I and results in cell death. J Biol Chem 2009, 284(17):11436-11445.
38. Thakur N, Klopstock T, Jackowski S, Kuscer E, Tricta F, Videnovic A, Jinnah HA: Rational Design of Novel Therapies for Pantothenate Kinase-Associated Neurodegeneration. Mov Disord 2021.
39. Subramanian C, Yun MK, Yao J, Sharma LK, Lee RE, White SW, Jackowski S, Rock CO: Allosteric Regulation of Mammalian Pantothenate Kinase. J Biol Chem 2016, 291(42):22302-22314.
40. Di Meo I, Carecchio M, Tiranti V: Inborn errors of coenzyme A metabolism and neurodegeneration. J Inherit Metab Dis 2019, 42(1):49-56.
41. Zano SP, Pate C, Frank M, Rock CO, Jackowski S: Correction of a genetic deficiency in pantothenate kinase 1 using phosphopantothenate replacement therapy. Molecular genetics and metabolism 2015, 116(4):281-288.
42. Balibar CJ, Hollis-Symynkywicz MF, Tao J: Pantethine rescues phosphopantothenoylcysteine synthetase and phosphopantothenoylcysteine decarboxylase deficiency in Escherichia coli but not in Pseudomonas aeruginosa. Journal of bacteriology 2011, 193(13):3304-3312.
43. Rana A, Seinen E, Siudeja K, Muntendam R, Srinivasan B, van der Want JJ, Hayflick S, Reijngoud DJ, Kayser O, Sibon OC: Pantethine rescues a Drosophila model for pantothenate kinase-associated neurodegeneration. Proceedings of the National Academy of Sciences of the United States of America 2010, 107(15):6988-6993.
44. Zizioli D, Tiso N, Guglielmi A, Saraceno C, Busolin G, Giuliani R, Khatri D, Monti E, Borsani G, Argenton F et al: Knock-down of pantothenate kinase 2 severely affects the development of the nervous and vascular system in zebrafish, providing new insights into PKAN disease. Neurobiology of disease 2016, 85:35-48.
45. Brunetti D, Dusi S, Giordano C, Lamperti C, Morbin M, Fugnanesi V, Marchet S, Fagiolari G, Sibon O, Moggio M et al: Pantethine treatment is effective in recovering the disease phenotype induced by ketogenic diet in a pantothenate kinase-associated neurodegeneration mouse model. Brain 2014, 137(Pt 1):57-68.
46. Evans M, Rumberger JA, Azumano I, Napolitano JJ, Citrolo D, Kamiya T: Pantethine, a derivative of vitamin B5, favorably alters total, LDL and non-HDL cholesterol in low to moderate cardiovascular risk subjects eligible for statin therapy: a triple-blinded placebo and diet-controlled investigation. Vasc Health Risk Manag 2014, 10:89-100.
47. Chang X, Zhang J, Jiang Y, Yao B, Wang J, Wu Y: Pilot trial on the efficacy and safety of pantethine in children with pantothenate kinase-associated neurodegeneration: a single-arm, open-label study. Orphanet journal of rare diseases 2020, 15(1):248.
48. Girotti AW: Lipid hydroperoxide generation, turnover, and effector action in biological systems. Journal of lipid research 1998, 39(8):1529-1542.
49. Yin H, Xu L, Porter NA: Free radical lipid peroxidation: mechanisms and analysis. Chemical reviews 2011, 111(10):5944-5972.
50. Ayala A, Munoz MF, Arguelles S: Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxidative medicine and cellular longevity 2014, 2014:360438.
51. Burton GW, Joyce A, Ingold KU: First proof that vitamin E is major lipid-soluble, chain-breaking antioxidant in human blood plasma. Lancet 1982, 2(8293):327.
52. Ricciarelli R, Argellati F, Pronzato MA, Domenicotti C: Vitamin E and neurodegenerative diseases. Molecular aspects of medicine 2007, 28(5-6):591-606.
53. Ulatowski LM, Manor D: Vitamin E and neurodegeneration. Neurobiology of disease 2015, 84:78-83.
54. Burton GW, Traber MG: Vitamin E: antioxidant activity, biokinetics, and bioavailability. Annual review of nutrition 1990, 10:357-382.
55. Espinos C, Galindo MI, Garcia-Gimeno MA, Ibanez-Cabellos JS, Martinez-Rubio D, Millan JM, Rodrigo R, Sanz P, Seco-Cervera M, Sevilla T et al: Oxidative Stress, a Crossroad Between Rare Diseases and Neurodegeneration. Antioxidants (Basel) 2020, 9(4).
56. Avallone R, Vitale G, Bertolotti M: Omega-3 Fatty Acids and Neurodegenerative Diseases: New Evidence in Clinical Trials. Int J Mol Sci 2019, 20(17).
57. Calon F, Cole G: Neuroprotective action of omega-3 polyunsaturated fatty acids against neurodegenerative diseases: evidence from animal studies. Prostaglandins Leukot Essent Fatty Acids 2007, 77(5-6):287-293.
58. Eckert GP, Lipka U, Muller WE: Omega-3 fatty acids in neurodegenerative diseases: focus on mitochondria. Prostaglandins Leukot Essent Fatty Acids 2013, 88(1):105-114.
59. Calviello G, Su HM, Weylandt KH, Fasano E, Serini S, Cittadini A: Experimental evidence of omega-3 polyunsaturated fatty acid modulation of inflammatory cytokines and bioactive lipid mediators: their potential role in inflammatory, neurodegenerative, and neoplastic diseases. Biomed Res Int 2013, 2013:743171.
60. Cardoso C, Afonso C, Bandarra NM: Dietary DHA and health: cognitive function ageing. Nutr Res Rev 2016, 29(2):281-294.
61. Moore K, Hughes CF, Ward M, Hoey L, McNulty H: Diet, nutrition and the ageing brain: current evidence and new directions. The Proceedings of the Nutrition Society 2018, 77(2):152-163.
62. Villalon-Garcia I, Alvarez-Cordoba M, Povea-Cabello S, Talaveron-Rey M, Villanueva-Paz M, Luzon-Hidalgo R, Suarez-Rivero JM, Suarez-Carrillo A, Munuera-Cabeza M, Salas JJ et al: Vitamin E prevents lipid peroxidation and iron accumulation in PLA2G6-Associated Neurodegeneration. Neurobiology of disease 2022, 165:105649.
63. Liufu T, Wang Z: Treatment for mitochondrial diseases. Reviews in the neurosciences 2020.
64. Modanloo M, Shokrzadeh M: Analyzing Mitochondrial Dysfunction, Oxidative Stress, and Apoptosis: Potential Role of L-carnitine. Iranian journal of kidney diseases 2019, 13(2):74-86.
65. Infante JP, Huszagh VA: Secondary carnitine deficiency and impaired docosahexaenoic (22:6n-3) acid synthesis: a common denominator in the pathophysiology of diseases of oxidative phosphorylation and beta-oxidation. FEBS Lett 2000, 468(1):1-5.
66. Lonsdale D: A review of the biochemistry, metabolism and clinical benefits of thiamin(e) and its derivatives. Evid Based Complement Alternat Med 2006, 3(1):49-59.
67. Marsac C, Benelli C, Desguerre I, Diry M, Fouque F, De Meirleir L, Ponsot G, Seneca S, Poggi F, Saudubray JM et al: Biochemical and genetic studies of four patients with pyruvate dehydrogenase E1 alpha deficiency. Human genetics 1997, 99(6):785-792.
68. Naito E, Ito M, Takeda E, Yokota I, Yoshijima S, Kuroda Y: Molecular analysis of abnormal pyruvate dehydrogenase in a patient with thiamine-responsive congenital lactic acidemia. Pediatric research 1994, 36(3):340-346.
69. Naito E, Ito M, Yokota I, Saijo T, Chen S, Maehara M, Kuroda Y: Concomitant administration of sodium dichloroacetate and thiamine in west syndrome caused by thiamine-responsive pyruvate dehydrogenase complex deficiency. Journal of the neurological sciences 1999, 171(1):56-59.
70. Naito E, Ito M, Yokota I, Saijo T, Matsuda J, Ogawa Y, Kitamura S, Takada E, Horii Y, Kuroda Y: Thiamine-responsive pyruvate dehydrogenase deficiency in two patients caused by a point mutation (F205L and L216F) within the thiamine pyrophosphate binding region. Biochimica et biophysica acta 2002, 1588(1):79-84.
71. Naito E, Ito M, Yokota I, Saijo T, Matsuda J, Osaka H, Kimura S, Kuroda Y: Biochemical and molecular analysis of an X-linked case of Leigh syndrome associated with thiamin-responsive pyruvate dehydrogenase deficiency. J Inherit Metab Dis 1997, 20(4):539-548.
72. Xu Y, Li XJ: [Multi-target therapeutics and new drug discovery]. Yao Xue Xue Bao 2009, 44(3):226-230.
73. Zimmermann GR, Lehar J, Keith CT: Multi-target therapeutics: when the whole is greater than the sum of the parts. Drug discovery today 2007, 12(1-2):34-42.
74. Keith CT, Borisy AA, Stockwell BR: Multicomponent therapeutics for networked systems. Nature reviews Drug discovery 2005, 4(1):71-78.
75. Borisy AA, Elliott PJ, Hurst NW, Lee MS, Lehar J, Price ER, Serbedzija G, Zimmermann GR, Foley MA, Stockwell BR et al: Systematic discovery of multicomponent therapeutics. Proceedings of the National Academy of Sciences of the United States of America 2003, 100(13):7977-7982.
76. Butcher EC: Can cell systems biology rescue drug discovery? Nature reviews Drug discovery 2005, 4(6):461-467.
77. Lin MT, Beal MF: Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 2006, 443(7113):787-795.
78. Ibrahim MM, Gabr MT: Multitarget therapeutic strategies for Alzheimer's disease. Neural Regen Res 2019, 14(3):437-440.
79. Maramai S, Benchekroun M, Gabr MT, Yahiaoui S: Multitarget Therapeutic Strategies for Alzheimer's Disease: Review on Emerging Target Combinations. Biomed Res Int 2020, 2020:5120230.