1 Sabari, B. R., Dall'Agnese, A. & Young, R. A. Biomolecular Condensates in the Nucleus. Trends Biochem Sci 45, 961-977, doi:10.1016/j.tibs.2020.06.007 (2020).
2 Berezney, R. & Coffey, D. S. Identification of a nuclear protein matrix. Biochem Biophys Res Commun 60, 1410-1417, doi:10.1016/0006-291x(74)90355-6 (1974).
3 He, D. C., Martin, T. & Penman, S. Localization of heterogeneous nuclear ribonucleoprotein in the interphase nuclear matrix core filaments and on perichromosomal filaments at mitosis. Proc Natl Acad Sci U S A 88, 7469-7473, doi:10.1073/pnas.88.17.7469 (1991).
4 Nickerson, J. A., Krochmalnic, G., Wan, K. M. & Penman, S. Chromatin architecture and nuclear RNA. Proc Natl Acad Sci U S A 86, 177-181, doi:10.1073/pnas.86.1.177 (1989).
5 He, D. C., Nickerson, J. A. & Penman, S. Core filaments of the nuclear matrix. J Cell Biol 110, 569-580, doi:10.1083/jcb.110.3.569 (1990).
6 Nickerson, J. A., Krockmalnic, G., Wan, K. M. & Penman, S. The nuclear matrix revealed by eluting chromatin from a cross-linked nucleus. Proc Natl Acad Sci U S A 94, 4446-4450, doi:10.1073/pnas.94.9.4446 (1997).
7 Pederson, T. Half a century of "the nuclear matrix". Mol Biol Cell 11, 799-805, doi:10.1091/mbc.11.3.799 (2000).
8 Kiledjian, M. & Dreyfuss, G. Primary structure and binding activity of the hnRNP U protein: binding RNA through RGG box. EMBO J 11, 2655-2664 (1992).
9 Fackelmayer, F. O., Dahm, K., Renz, A., Ramsperger, U. & Richter, A. Nucleic-acid-binding properties of hnRNP-U/SAF-A, a nuclear-matrix protein which binds DNA and RNA in vivo and in vitro. Eur J Biochem 221, 749-757, doi:10.1111/j.1432-1033.1994.tb18788.x (1994).
10 Ye, J. et al. hnRNP U protein is required for normal pre-mRNA splicing and postnatal heart development and function. Proc Natl Acad Sci U S A 112, E3020-3029, doi:10.1073/pnas.1508461112 (2015).
11 Xiao, R. et al. Nuclear matrix factor hnRNP U/SAF-A exerts a global control of alternative splicing by regulating U2 snRNP maturation. Mol Cell 45, 656-668, doi:10.1016/j.molcel.2012.01.009 (2012).
12 Creamer, K. M., Kolpa, H. J. & Lawrence, J. B. Nascent RNA scaffolds contribute to chromosome territory architecture and counter chromatin compaction. Mol Cell 81, 3509-3525 e3505, doi:10.1016/j.molcel.2021.07.004 (2021).
13 Nozawa, R. S. et al. SAF-A Regulates Interphase Chromosome Structure through Oligomerization with Chromatin-Associated RNAs. Cell 169, 1214-1227 e1218, doi:10.1016/j.cell.2017.05.029 (2017).
14 Cho, W. K. et al. Super-resolution imaging of fluorescently labeled, endogenous RNA Polymerase II in living cells with CRISPR/Cas9-mediated gene editing. Sci Rep 6, 35949, doi:10.1038/srep35949 (2016).
15 Marenda, M., Lazarova, E. & Gilbert, N. The role of SAF-A/hnRNP U in regulating chromatin structure. Curr Opin Genet Dev 72, 38-44, doi:10.1016/j.gde.2021.10.008 (2022).
16 Natsume, T., Kiyomitsu, T., Saga, Y. & Kanemaki, M. T. Rapid Protein Depletion in Human Cells by Auxin-Inducible Degron Tagging with Short Homology Donors. Cell Rep 15, 210-218, doi:10.1016/j.celrep.2016.03.001 (2016).
17 Cho, W. K. et al. RNA Polymerase II cluster dynamics predict mRNA output in living cells. Elife 5, doi:10.7554/eLife.13617 (2016).
18 Cho, W. K. et al. Mediator and RNA polymerase II clusters associate in transcription-dependent condensates. Science 361, 412-415, doi:10.1126/science.aar4199 (2018).
19 Sabari, B. R. et al. Coactivator condensation at super-enhancers links phase separation and gene control. Science 361, doi:10.1126/science.aar3958 (2018).
20 Kolpa, H. J., Creamer, K. M., Hall, L. L. & Lawrence, J. B. SAF-A mutants disrupt chromatin structure through dominant negative effects on RNAs associated with chromatin. Mamm Genome, doi:10.1007/s00335-021-09935-8 (2021).
21 Lee, R. et al. CTCF-mediated chromatin looping provides a topological framework for the formation of phase-separated transcriptional condensates. Nucleic Acids Res 50, 207-226, doi:10.1093/nar/gkab1242 (2022).
22 Arganda-Carreras, I., Fernandez-Gonzalez, R., Munoz-Barrutia, A. & Ortiz-De-Solorzano, C. 3D reconstruction of histological sections: Application to mammary gland tissue. Microsc Res Tech 73, 1019-1029, doi:10.1002/jemt.20829 (2010).
23 Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat Methods 9, 676-682, doi:10.1038/nmeth.2019 (2012).
24 Narayanan, A. et al. A first order phase transition mechanism underlies protein aggregation in mammalian cells. Elife 8, doi:10.7554/eLife.39695 (2019).
25 Andrews, J. O. et al. qSR: a quantitative super-resolution analysis tool reveals the cell-cycle dependent organization of RNA Polymerase I in live human cells. Sci Rep 8, 7424, doi:10.1038/s41598-018-25454-0 (2018).
26 Huelga, S. C. et al. Integrative genome-wide analysis reveals cooperative regulation of alternative splicing by hnRNP proteins. Cell Rep 1, 167-178, doi:10.1016/j.celrep.2012.02.001 (2012).
27 Yugami, M., Okano, H., Nakanishi, A. & Yano, M. Analysis of the nucleocytoplasmic shuttling RNA-binding protein HNRNPU using optimized HITS-CLIP method. PLoS One 15, e0231450, doi:10.1371/journal.pone.0231450 (2020).
28 Spector, D. L. & Lamond, A. I. Nuclear speckles. Cold Spring Harb Perspect Biol 3, doi:10.1101/cshperspect.a000646 (2011).
29 Wei, X., Somanathan, S., Samarabandu, J. & Berezney, R. Three-dimensional visualization of transcription sites and their association with splicing factor-rich nuclear speckles. J Cell Biol 146, 543-558, doi:10.1083/jcb.146.3.543 (1999).
30 Prasanth, K. V. et al. Nuclear organization and dynamics of 7SK RNA in regulating gene expression. Mol Biol Cell 21, 4184-4196, doi:10.1091/mbc.E10-02-0105 (2010).
31 Hall, L. L., Smith, K. P., Byron, M. & Lawrence, J. B. Molecular anatomy of a speckle. Anat Rec A Discov Mol Cell Evol Biol 288, 664-675, doi:10.1002/ar.a.20336 (2006).
32 Pinkel, D. et al. Fluorescence in situ hybridization with human chromosome-specific libraries: detection of trisomy 21 and translocations of chromosome 4. Proc Natl Acad Sci U S A 85, 9138-9142, doi:10.1073/pnas.85.23.9138 (1988).
33 Cremer, T., Lichter, P., Borden, J., Ward, D. C. & Manuelidis, L. Detection of chromosome aberrations in metaphase and interphase tumor cells by in situ hybridization using chromosome-specific library probes. Hum Genet 80, 235-246, doi:10.1007/BF01790091 (1988).
34 Quinodoz, S. A. et al. Higher-Order Inter-chromosomal Hubs Shape 3D Genome Organization in the Nucleus. Cell 174, 744-757 e724, doi:10.1016/j.cell.2018.05.024 (2018).