Abella SR, Fornwalt PJ (2015) Ten years of vegetation assembly after a North American mega fire. Global Change Biol 21, 789-802. https://doi.org/10.1111/gcb.12722
Ali AA, Xu C, Rogers A, McDowell NG, Medlyn BE, Fisher RA, Wullschleger SD, Reich PB, Vrugt JA, Bauerle WL, Santiago LS, Wilson CJ (2015) Global-scale environmental control of plant photosynthetic capacity. Ecol Appl 25, 2349-2365. https://doi.org/10.1890/14-2111.1.sm
Baer A, Michaletz ST, Mayr S (2019) Fire effects on tree physiology. New Phytol 223, 1728-1741. https://doi.org/10.1111/nph.15871
Bani A, Pioli S, Ventura M, Panzacchi P, Borruso L, Tognetti R, Tonon G, Brusetti L (2018) The role of microbial community in the decomposition of leaf litter and deadwood. Appl Soil Ecol 126, 75-84. https://doi.org/10.1016/j.apsoil.2018.02.017
Bantle A, Borken W, Ellerbrock RH, Schulze ED, Weisser WW, Matzner E (2014) Quantity and quality of dissolved organic carbon released from coarse woody debris of different tree species in the early phase of decomposition. Forest Ecol Manag 329, 287-294. https://doi.org/10.1016/j.foreco.2014.06.035
Bantle A, Borken W, Matzner E (2014) Dissolved nitrogen release from coarse woody debris of different tree species in the early phase of decomposition. Forest Ecol Manag 334, 277-283. https://doi.org/10.1016/j.foreco.2014.09.015
Beghin R, Cherubini P, Battipaglia G, Siegwolf R, Saurer M, Bovio G (2011) Tree-ring growth and stable isotopes (C-13 and N-15) detect effects of wildfires on tree physiological processes in Pinus sylvestris L. Trees-Struct Funct 25, 627-636. https://doi.org/10.1007/s00468-011-0539-9
Berner LT, Beck PSA, Loranty MM, Alexander HD, Mack MC, Goetz SJ (2012) Cajander larch (Larix cajanderi) biomass distribution, fire regime and post-fire recovery in northeastern Siberia (vol 9, pg 3943, 2012). Biogeosciences 9, 4871. https://doi.org/10.5194/bg-9-4871-2012
Bodí MB, Martin DA, Balfour VN, Santín C, Doerr SH, Pereira P, Cerdà A, Mataix-Solera J (2014) Wildland fire ash: Production, composition and eco-hydro-geomorphic effects. Earth-Sci Rev 130, 103-127. https://doi.org/https://doi.org/10.1016/j.earscirev.2013.12.007
Bovard BD, Curtis PS, Vogel CS, Su HB, Schmid HP (2005) Environmental controls on sap flow in a northern hardwood forest. Tree Physiol 25, 31-38. https://doi.org/10.1093/treephys/25.1.31
Brandt JP, Flannigan MD, Maynard DG, Thompson ID, Volney WJA (2013) An introduction to Canada's boreal zone: ecosystem processes, health, sustainability, and environmental issues INTRODUCTION. Environ Rev 21, 207-226. https://doi.org/10.1139/er-2013-0040
Bray SR, Kitajima K, Mack MC (2012) Temporal dynamics of microbial communities on decomposing leaf litter of 10 plant species in relation to decomposition rate. Soil Biol Biochem 49, 30-37. https://doi.org/10.1016/j.soilbio.2012.02.009
Brock O, Helmus R, Kalbitz K, Jansen B (2019) Non-target screening of leaf litter-derived dissolved organic matter using liquid chromatography coupled to high-resolution mass spectrometry (LC-QTOF-MS). Eur J Soil Sci. https://doi.org/10.1111/ejss.12894
Chang Y, He HS, Bishop I, Hu Y, Bu R, Xu C, Li X (2007) Long-term forest landscape responses to fire exclusion in the Great Xing'an Mountains, China. Int J Wildland Fire 16, 34-44. https://doi.org/10.1071/WF05093
Chen Y, Liu Y, Zhang J, Yang W, He R, Deng C (2018) Microclimate exerts greater control over litter decomposition and enzyme activity than litter quality in an alpine forest-tundra ecotone. Sci Rep-Uk 8. https://doi.org/10.1038/s41598-018-33186-4
Clarke PJ, Keith DA, Vincent BE, Letten AD (2015) Post-grazing and post-fire vegetation dynamics: long-term changes inmountain bogs reveal community resilience. J Veg Sci 26, 278-290. https://doi.org/10.1111/jvs.12239
Coleman TW, Meeker JR, Clarke SR, Rieske LK (2008) The suppression of Dendroctonus frontalis and subsequent wildfire have an impact on forest stand dynamics. Appl Veg Sci 11, 231-248. https://doi.org/10.3170/2008-7-18362
Dong L, Zhang L, Li F (2014) A compatible system of biomass equations for three conifer species in Northeast, China. Forest Ecol Manag 329, 306-317. https://doi.org/10.1016/j.foreco.2014.05.050
Dong L, Zhang L, Li F (2015) Developing additive systems of biomass equations for nine hardwood species in Northeast China. Trees-Struct Funct 29, 1149-1163. https://doi.org/10.1007/s00468-015-1196-1
Fan J, Zhang X, Lui X, Yan Y, Wang X (2014) Leaf Litter Decomposition in Three Subalpine Forests along an Elevation Gradient in Tibet. Pol J Environ Stud 23, 1137-1146.
Fisk MC, Schmidt SK, Seastedt ATR (1998) TOPOGRAPHIC PATTERNS OF ABOVE- AND BELOWGROUND PRODUCTION AND NITROGEN CYCLING IN ALPINE TUNDRA. Ecology 79, 2253-2266.
Flannigan M, Stocks B, Turetsky M, Wotton M (2009a) Impacts of climate change on fire activity and fire management in the circumboreal forest. Global Change Biol 15, 549-560. https://doi.org/10.1111/j.1365-2486.2008.01660.x
Flannigan M, Stocks B, Turetsky M, Wotton M (2009b) Impacts of climate change on fire activity and fire management in the circumboreal forest. Global Change Biol 15, 549-560. https://doi.org/10.1111/j.1365-2486.2008.01660.x
Froberg M, Berggren D, Bergkvist B, Bryant C, Knicker H (2003) Contributions of Oi, Oe and Oa horizons to dissolved organic matter in forest floor leachates. Geoderma 113, 311-322. https://doi.org/10.1016/S0016-7061(02)00367-1
Froberg M, Kleja DB, Hagedorn F (2007) The contribution of fresh litter to dissolved organic carbon leached from a coniferous forest floor. Eur J Soil Sci 58, 108-114. https://doi.org/10.1111/j.1365-2389.2006.00812.x
Fu Y, He HS, Zhao J, Larsen DR, Zhang H, Sunde MG, Duan S (2018) Climate and Spring Phenology Effects on Autumn Phenology in the Greater Khingan Mountains, Northeastern China. Remote Sens-Basel 10, 449. https://doi.org/10.3390/rs10030449
Goulden ML, McMillan AMS, Winston GC, Rocha AV, Manies KL, Harden JW, Bond-Lamberty BP (2011) Patterns of NPP, GPP, respiration, and NEP during boreal forest succession. Global Change Biol 17, 855-871. https://doi.org/10.1111/j.1365-2486.2010.02274.x
Griffiths RP, Madritch MD, Swanson AK (2009) The effects of topography on forest soil characteristics in the Oregon Cascade Mountains (USA): Implications for the effects of climate change on soil properties. Forest Ecol Manag 257, 1-7. https://doi.org/10.1016/j.foreco.2008.08.010
Hall SA, Burke IC, Hobbs NT (2006) Litter and dead wood dynamics in ponderosa pine forests along a 160-year chronosequence. Ecol Appl 16, 2344-2355. https://doi.org/10.1890/1051-0761(2006)016[2344:LADWDI]2.0.CO;2
Handa IT, Aerts R, Berendse F, Berg MP, Bruder A, Butenschoen O, Chauvet E, Gessner MO, Jabiol J, Makkonen M, McKie BG, Malmqvist B, Peeters ETHM, Scheu S, Schmid B, van Ruijven J, Vos VCA, Hättenschwiler S (2014) Consequences of biodiversity loss for litter decomposition across biomes. Nature 509, 218.
Hart SC, DeLuca TH, Newman GS, MacKenzie MD, Boyle SI (2005) Post-fire vegetative dynamics as drivers of microbial community structure and function in forest soils. Forest Ecol Manag 220, 166-184. https://doi.org/10.1016/j.foreco.2005.08.012
Hilli S, Stark S, Derome J (2008) Water-extractable organic compounds in different components of the litter layer of boreal coniferous forest soils along a climatic gradient. Boreal Environ Res 13B, 92-106.
Huang WZ, Schoenau JJ (1998) Fluxes of water-soluble nitrogen and phosphorus in the forest floor and surface mineral soil of a boreal aspen stand. Geoderma 81, 251-264. https://doi.org/https://doi.org/10.1016/S0016-7061(97)00092-X
Kalbitz K, Glaser B, Bol R (2004a) Clear-cutting of a Norway spruce stand: implications for controls on the dynamics of dissolved organic matter in the forest floor. Eur J Soil Sci 55, 401-413. https://doi.org/10.1111/j.1351-0754.2004.00609.x
Kalbitz K, Glaser B, Bol R (2004b) Clear-cutting of a Norway spruce stand: implications for controls on the dynamics of dissolved organic matter in the forest floor. Eur J Soil Sci 55, 401-413. https://doi.org/10.1111/j.1351-0754.2004.00609.x
Kalbitz K, Meyer A, Yang R, Gerstberger P (2007) Response of dissolved organic matter in the forest floor to long-term manipulation of litter and throughfall inputs. Biogeochemistry 86, 301-318. https://doi.org/10.1007/s10533-007-9161-8
Kalbitz K, Schmerwitz J, Schwesig D, Matzner E (2003) Biodegradation of soil-derived dissolved organic matter as related to its properties. Geoderma 113, 273-291. https://doi.org/10.1016/S0016-7061(02)00365-8
Keane RE, Cary GJ, Davies ID, Flannigan MD, Gardner RH, Lavorel S, Lenihan JM, Li C, Rupp TS (2004) A classification of landscape fire succession models: spatial simulations of fire and vegetation dynamics. Ecol Model 179, 3-27. https://doi.org/10.1016/j.ecolmodel.2004.03.015
Kenny SA, Bennett AF, Clarke MF, Morgan JW (2018) Time-since-fire and climate interact to affect the structural recovery of an Australian semi-arid plant community. Austral Ecol 43, 456-469. https://doi.org/10.1111/aec.12582
Kong J, Yang J, Cai W (2019) Topography controls post-fire changes in soil properties in a Chinese boreal forest. Sci Total Environ 651, 2662-2670. https://doi.org/10.1016/j.scitotenv.2018.10.164
Koster K, Berninger F, Heinonsalo J, Linden A, Koster E, Ilvesniemi H, Pumpanen J (2016) The long-term impact of low-intensity surface fires on litter decomposition and enzyme activities in boreal coniferous forests. Int J Wildland Fire 25, 618. https://doi.org/10.1071/WF14217_CO
Lee M, Park J, Matzner E (2018) Sustained production of dissolved organic carbon and nitrogen in forest floors during continuous leaching. Geoderma 310, 163-169. https://doi.org/10.1016/j.geoderma.2017.07.027
Lindenmayer DB, MacGregor C, Wood JT, Cunningham RB, Crane M, Michael D, Montague-Drake R, Brown D, Fortescue M, Dexter N, Hudson M, Gill AM (2009) What factors influence rapid post-fire site re-occupancy? A case study of the endangered Eastern Bristlebird in eastern Australia. Int J Wildland Fire 18, 84-95. https://doi.org/10.1071/WF07048
Liu Y, Goodrick S, Heilman W (2014) Wildland fire emissions, carbon, and climate: Wildfire-climate interactions. Forest Ecol Manag 317, 80-96. https://doi.org/10.1016/j.foreco.2013.02.020
Magnan G, Lavoie M, Payette S (2012) Impact of fire on long-term vegetation dynamics of ombrotrophic peatlands in northwestern Quebec, Canada. Quaternary Res 77, 110-121. https://doi.org/10.1016/j.yqres.2011.10.006
Makita N, Pumpanen J, Koster K, Berninger F (2016) Changes in very fine root respiration and morphology with time since last fire in a boreal forest. Plant Soil 402, 303-316. https://doi.org/10.1007/s11104-016-2801-9
McDowell WH, Magill AH, Aitkenhead-Peterson JA, Aber JD, Merriam JL, Kaushal SS (2004) Effects of chronic nitrogen amendment on dissolved organic matter and inorganic nitrogen in soil solution. Forest Ecol Manag 196, 29-41. https://doi.org/10.1016/j.foreco.2004.03.010
McNamara BA, Kane JM, Greene DF (2019) Post-fire fuel succession in a rare California, USA, closed-cone conifer. Fire Ecol 15. https://doi.org/10.1186/s42408-019-0059-3
Mendez J, Morales G, de Nascimento L, Otto R, Gallardo A, Maria Fernandez-Palacios J (2015) Understanding long-term post-fire regeneration of a fire-resistant pine species. Ann Forest Sci 72, 609-619. https://doi.org/10.1007/s13595-015-0482-9
Moffet CA, Taylor JB, Booth DT (2015) Postfire shrub cover dynamics: A 70-year fire chronosequence in mountain big sagebrush communities. J Arid Environ 114, 116-123. https://doi.org/10.1016/j.jaridenv.2014.12.005
MАRKOVIC MS, Ilic BS, Miladinovic DL, Stamenkovic SM, Trajkovic R, STАNKOV-JOVАNOVIC VP, Djelic GT (2015) Activity of a catalase enzyme in plants from the burned areas of the Vidlic mountain beech forest. Oxidation Communications 38, 860-868.
Neff JC, Asner GP (2001) Dissolved Organic Carbon in Terrestrial Ecosystems: Synthesis and a Model. Ecosystems 4, 29-48. https://doi.org/10.1007/s100210000058
Park JH, Matzner E (2003) Controls on the release of dissolved organic carbon and nitrogen from a deciduous forest floor investigated by manipulations of aboveground litter inputs and water flux. Biogeochemistry 66, 265-286. https://doi.org/10.1023/B:BIOG.0000005341.19412.7b
Preston CM, Bhatti JS, Flanagan LB, Norris C (2006) Stocks, chemistry, and sensitivity to climate change of dead organic matter along the Canadian boreal forest transect case study. Climatic Change 74, 223-251. https://doi.org/10.1007/s10584-006-0466-8
Qaderi MM, Martel AB, Dixon SL (2019) Environmental Factors Influence Plant Vascular System and Water Regulation. PLANTS-BASEL 8, 65. https://doi.org/10.3390/plants8030065
Roberts DW, Cooper SV 1989 Concepts and techniques of vegetation mapping. General Technical Report INT-US Department of Agriculture, Forest Service, Intermountain Research Station, USA. pp. 90-96.
Rosseel Y (2012) lavaan: An R Package for Structural Equation Modeling. J Stat Softw 48, 1-36.
Rumpel C (2019) Soils linked to climate change. Nature 572, 442-443. https://doi.org/10.1038/d41586-019-02450-6
Ruokolainen L, Salo K (2006) The succession of boreal forest vegetation during ten years after slash-burning in Koli National Park, eastern Finland. Ann Bot Fenn 43, 363-378.
Santin C, Doerr SH, Merino A, Bryant R, Loader NJ (2016) Forest floor chemical transformations in a boreal forest fire and their correlations with temperature and heating duration. Geoderma 264, 71-80. https://doi.org/10.1016/j.geoderma.2015.09.021
Sayer EJ (2006) Using experimental manipulation to assess the roles of leaf litter in the functioning of forest ecosystems. Biol Rev 81, 1-31. https://doi.org/10.1017/S1464793105006846
Scharlemann JPW, Tanner EVJ, Hiederer R, Kapos V (2014) Global soil carbon: understanding and managing the largest terrestrial carbon pool. Carbon Manag 5, 81-91. https://doi.org/10.4155/CMT.13.77
Schulze ED, Wirth C, Mollicone D, von Luepke N, Ziegler W, Achard F, Mund M, Prokushkin A, Scherbina S (2012) Factors promoting larch dominance in central Siberia: fire versus growth performance and implications for carbon dynamics at the boundary of evergreen and deciduous conifers. Biogeosciences 9, 1405-1421. https://doi.org/10.5194/bg-9-1405-2012
Shryock DF, Esque TC, Chen FC (2015) Topography and climate are more important drivers of long-term, post-fire vegetation assembly than time-since-fire in the Sonoran Desert, US. J Veg Sci 26, 1134-1147. https://doi.org/10.1111/jvs.12324
Sjoberg G, Knicker H, Nilsson SI, Berggren D (2004) Impact of long-term N fertilization on the structural composition of spruce litter and mor humus. Soil Biol Biochem 36, 609-618. https://doi.org/10.1016/j.soilbio.2003.11.006
Song X, Wang G, Ran F, Chang R, Song C, Xiao Y (2017) Effects of topography and fire on soil CO(2)and CH4 flux in boreal forestunderlain by permafrost in northeast China. Ecol Eng 106, 35-43. https://doi.org/10.1016/j.ecoleng.2017.05.033
Stark S, Hilli S, Willfor S, Smeds AI, Reunanen M, Penttinen M, Hautajarvi R (2012) Composition of lipophilic compounds and carbohydrates in the accumulated plant litter and soil organic matter in boreal forests. Eur J Soil Sci 63, 65-74. https://doi.org/10.1111/j.1365-2389.2011.01411.x
Stephens SL, Agee JK, Fule PZ, North MP, Romme WH, Swetnam TW, Turner MG (2013) Managing Forests and Fire in Changing Climates. Science 342, 41-42. https://doi.org/10.1126/science.1240294
Thieme L, Graeber D, Hofmann D, Bischoff S, Schwarz MT, Steffen B, Meyer U, Kaupenjohann M, Wilcke W, Michalzik B, Siemens J (2019) Dissolved organic matter characteristics of deciduous and coniferous forests with variable management: different at the source, aligned in the soil. Biogeosciences 16, 1411-1432. https://doi.org/10.5194/bg-16-1411-2019
Tipping E, Froberg M, Berggren D, Mulder J, Bergkvist B (2005) DOC leaching from a coniferous forest floor: modeling a manipulation experiment. J Plant Nutr Soil Sc 168, 316-324. https://doi.org/10.1002/jpln.200421645
Toberman H, Chen C, Lewis T, Elser JJ (2014) High-frequency fire alters C : N : P stoichiometry in forest litter. Global Change Biol 20, 2321-2331. https://doi.org/10.1111/gcb.12432
Tranvik LJ, Downing JA, Cotner JB, Loiselle SA, Striegl RG, Ballatore TJ, Dillon P, Finlay K, Fortino K, Knoll LB, Kortelainen PL, Kutser T, Larsen S, Laurion I, Leech DM, McCallister SL, McKnight DM, Melack JM, Overholt E, Porter JA, Prairie Y, Renwick WH, Roland F, Sherman BS, Schindler DW, Sobek S, Tremblay A, Vanni MJ, Verschoor AM, von Wachenfeldt E, Weyhenmeyer GA (2009) Lakes and reservoirs as regulators of carbon cycling and climate. Limnol Oceanogr 54, 2298-2314. https://doi.org/10.4319/lo.2009.54.6_part_2.2298
Treseder KK, Mack MC, Cross A (2004) Relationships among fires, fungi, and soil dynamics in Alaskan Boreal Forests. Ecol Appl 14, 1826-1838. https://doi.org/10.1890/03-5133
Trogisch S, He J, Hector A, Scherer-Lorenzen M (2016) Impact of species diversity, stand age and environmental factors on leaf litter decomposition in subtropical forests in China. Plant Soil 400, 337-350. https://doi.org/10.1007/s11104-015-2737-5
Uselman SM, Qualls RG, Lilienfein J (2012) Quality of soluble organic C, N, and P produced by different types and species of litter: Root litter versus leaf litter. Soil Biol Biochem 54, 57-67. https://doi.org/10.1016/j.soilbio.2012.03.021
Vargas R, Allen MF, Allen EB (2008) Biomass and carbon accumulation in a fire chronosequence of a seasonally dry tropical forest. Global Change Biol 14, 109-124. https://doi.org/10.1111/j.1365-2486.2007.01462.x
Walker XJ, Baltzer JL, Cumming SG, Day NJ, Ebert C, Goetz S, Johnstone JF, Potter S, Rogers BM, Schuur EAG, Turetsky MR, Mack MC (2019) Increasing wildfires threaten historic carbon sink of boreal forest soils. Nature 572, 520-523. https://doi.org/10.1038/s41586-019-1474-y
Wallingford PD, Sorte CJB (2019) Community regulation models as a framework for direct and indirect effects of climate change on species distributions. Ecosphere 10. https://doi.org/10.1002/ecs2.2790
Ward C, Pothier D, Pare D (2014) Do Boreal Forests Need Fire Disturbance to Maintain Productivity? Ecosystems 17, 1053-1067. https://doi.org/10.1007/s10021-014-9782-4
Watson SJ, Taylor RS, Nimmo DG, Kelly LT, Haslem A, Clarke MF, Bennett AF (2012) Effects of time since fire on birds: How informative are generalized fire response curves for conservation management? Ecol Appl 22, 685-696. https://doi.org/10.1890/11-0850.1
Wickland KP, Waldrop MP, Aiken GR, Koch JC, Jorgenson M, Striegl RG (2018) Dissolved organic carbon and nitrogen release from boreal Holocene permafrost and seasonally frozen soils of Alaska. Environ Res Lett 13, 65011. https://doi.org/10.1088/1748-9326/aac4ad
Wright IJ, Dong N, Maire V, Prentice IC, Westoby M, Diaz S, Gallagher RV, Jacobs BF, Kooyman R, Law EA, Leishman MR, Niinemets U, Reich PB, Sack L, Villar R, Wang H, Wilf P (2017) Global climatic drivers of leaf size. Science 357, 917. https://doi.org/10.1126/science.aal4760
Zaitsev AS, Gongalsky KB, Korobushkin DI, Butenko KO, Gorshkova IA, Rakhleeva AA, Saifutdinov RA, Kostina NV, Shakhab SV, Yazrikova TE (2017) Reduced functionality of soil food webs in burnt boreal forests: a case study in Central Russia. Contemp Probl Ecol 10, 277-285. https://doi.org/10.1134/S199542551703012X