The complex quantum-chemical and spectral study of the anionic polymethine dyes with the simplest symmetrical terminal groups and with different length polymethine chain is performed. It was shown that these dyes produce the specific molecular orbitals positioned nearly the energy gap and located only within the terminal groups. By investigation of the absorption spectra, it was established that the typical highly intensive longwawelength spectral band is observed which are bathochromically shifted upon lengthening of the open conjugated chain; this polymethine band is connected with the electron transition between the frontier levels of the opposite symmetry. In the contrast, the local MOs take part in so-called quasi-local electron transitions involved also one the frontier orbital. The local transitions have small dipole moments and hence they do practically not appear in the absorption spectra, however, the local transitions cause the appearance of the non-deep minima in the spectra of the fluorescence excitation anisotropy.