Avila A, Justino F, Wilson A, Bromwich, D, Amorim, M (2016) Recent precipitation trends, flash floods and landslides in southern Brazil. Environ. Res. Lett. 11, 114029. https://doi.org/10.1088/1748-9326/11/11/114029
Boers N, Goswami B, Rheinwalt A, Bookhagen B, Hoskins B and Kurths J (2019) Complex networks reveal global pattern of extreme-rainfall teleconnections. Nature. 566. 373–377. https://doi.org/10.1038/s41586-018-0872-x
Bradford R A, O’Sullivan J J, Van Der Craats I M, Krywkow J, Rotko P, Aaltonen J, Bonaiuto M, De Dominici S, Waylen K, Schelfaut K (2012) Risk perception—issues for flood management in Europe. Natural Hazards Earth System Sciences, 12. 2299–2309. https://doi.org/10.5194/nhess-12-2299-2012.
Casanueva A, Rodríguez-Puebla C, Frías M D and González-Reviriego N (2014) Variability of extreme precipitation over Europe and its relationships with teleconnection patterns. Hydrol. Earth Syst Sci. 18. 709-725. https://doi.org/10.5194/hess-18-709-2014.
Clem K R, Fogt R L (2015) South Pacific circulation changes and their connection to the tropics and regional Antarctic warming in austral spring, 1979–2012. JGR Atmospheres. 119. https://doi.org/10.1002/2014JD022940. 2015.
Coelho Netto A L (2005) The forest-urban interface and natural disasters related to water in the Maciço da Tijuca: challenges to urban planning from a socio-environmental perspective. Rev. do Depar. de Geografia. 16. 46–60. https://doi.org/10.7154/RDG.2005.0016.0005.
Debortoli N S, Camarinha P I M, Marengo J A, Rodrigues R R (2017) An index of Brazil's vulnerability to expected increases in natural flash flooding and landslide disasters in the context of climate change. Nat. Hazards 557-582. https://doi:10.1007/s11069-016-2705-2
Dereczynski C P, Oliveira J S M, Osório C (2009) Climatology of precipitation in the municipality of Rio de Janeiro. Rev. bras. meteorol. 24. 1. 24–38. https://doi.org/10.1590/S0102-77862009000100003.
Dereczynski C P, Calado R N, de Barros A B (2017) Extreme rains in the municipality of Rio de Janeiro: History from the 19th century. Anuario do Inst. Geociencias. 40. 2. 17-30. http://dx.doi.org/10.11137/2017_2_17_30.
Donat M G, Lowry A L, Alexander L V, O’Gorman P A, Maher N (2016). More extreme precipitation in the world’s dry and wet regions. Nature Climate Change, 6, 508–513. https://doi.org/10.1038/nclimate2941.
Filho G R O (2012) Mass movements in the mountainous region of the state of Rio de Janeiro in 2011: diagnosis and proposal for measures to face environmental disasters. CES Revista. 26. 149–164.
Filho W, Lucio P, Spyrides M H (2016) Characterization of daily precipitation extremes in Northeast Brazil. Bol. Goiano de Geografia. 36. 3. 539–554. https://doi.org/10.5216/bgg.v36i3.44557.
Goyal M K, Shivam G, Sarma A K (2019) Spatial homogeneity of extreme precipitation indices using fuzzy clustering over northeast India. Natural Hazards, 98, 559–574. https://doi.org/10.1007/s11069-019-03715-z.
Haddad E A and Teixeira E (2015) Economic impacts of natural disasters in megacities: The case of floods in São Paulo, Brazil. Habitat International, 45, 106-113. https://doi.org/10.1016/j.habitatint.2014.06.023.
Halimatou T A, Kalifa T, Kyei-Baffour N (2017) Assessment of changing trends of daily precipitation and temperature extremes in Bamako and Ségou in Mali from 1961- 2014. Weat Clim Extrem. 18. 8–16. https://doi.org/10.1016/j.wace.2017.09.002.
Kendall, M. G. Rank Correlation Methods. New York, NY: Oxford University Press. 1975.
Kellens W, Zaalberg R, Neutens T, Vanneuville W, De Maeyer P (2011) An analysis of the public perception of flood risk on the Belgian coast. Risk Analysis, 31, 1055–1068. https://doi.org/10.1111/j.1539-6924.2010.01571.x.
Lechowska E (2018) What determines flood risk perception? A review of factors of flood risk perception and relations between its basic elements. Natural Hazards, 94, 1341–1366. https://doi.org/10.1007/s11069-018-3480-z.
Liebmann B, Jones C, Carvalho L M V De (2001) Interannual variability of daily extreme precipitation events in the state of São Paulo. Brazil. J. Climate. 14. 2. 208–18. https://doi.org/10.1175/1520-0442(2001)014<0208:IVODEP>2.0.CO;2
Lorentz, J, Calijuri M, Marques E, Baptista A. (2016) Multicriteria analysis applied to landslide susceptibility mapping. Nat. Hazards 1-12. https://doi:10.1007/s11069-016-2300-6
Maia A C N (2012) Images of a submerged city: Rio de Janeiro and its floods in the memory of writers and photographers. Rev. Escritos. 6. 247–274.
Mann H B (1945) Nonparametric tests against trend. Econometrica, v. 13, p. 245-259. https://doi: 10.2307/1907187
Marengo J A Camarinha P I, Alves L M, Diniz F, Betts R A (2021) Extreme Rainfall and Hydro-Geo-Meteorological Disaster Risk in 1.5, 2.0, and 4.0°C Global Warming Scenarios: An Analysis for Brazil. Front. Clim., 03 March 2021. https://doi.org/10.3389/fclim.2021.610433
Marengo J A, Espinoza J C (2016) Extreme seasonal droughts and floods in Amazonia: Causes. trends and impacts. Int. J. Climatol. 36. 3. 1033–1050. https://doi.org/10.1002/joc.4420.
Mastrantonas N, Herrera-Lormendez P, Magnusson L, Pappenberger F, Matschullat J (2021) Extreme precipitation events in the Mediterranean: Spatiotemporal characteristics and connection to large-scale atmospheric flow patterns. International Journal of Climatology, 41, 2710-2728. https://doi.org/10.1002/joc.6985.
Obregón G, Marengo J, Nobre C (2014) Rainfall and climate variability: long-term trends in the Metropolitan Area of São Paulo in the 20th century. Clim Res. 61. 2. 93–107. https://doi: https://doi.org/10.3354/cr01241.
Oulahen G, Shrubsole D, McBean G (2015) Determinants of residential vulnerability to flood hazards in Metro Vancouver, Canada. Natural Hazards, 78, 939–956. https://doi.org/10.1007/s11069-015-1751-5.
Párraga G O O (2003) Dynamics of the climatic variability of precipitation over South America. National Institute for Space Research (INPE). n. INPE-8604-TDI/789. São José dos Campos. pp 196.
Raia A, Cavalcanti I F A (2008) The life cycle of the South American monsoon system. J Climate. 21. 23. 6227–6246. https://doi.org/10.1175/2008JCLI2249.1.
Raymond C, Matthews T, Horton R M (2020) The emergence of heat and humidity too severe for human tolerance. Science Advances, 6, eaaw1838. https://doi.org/10.1126/sciadv.aaw1838.
Regoto, P., Dereczynski, C., Chou, S. C., Bazzanela. (2021). Observed changes in air temperature and precipitation extremes over Brazil. International journal of climatology, 25. https://doi.org/10.1002/joc.7119.
Pereira R M S, Wanderley H S, Delgado R C (2021) Homogeneous regions for rainfall distribution in the city of Rio de Janeiro associated with the risk of natural disasters. Natural Hazards, v. 108, p. 234-248. https://doi.org/10.1007/s11069-021-05056-2.
Salviano M F, Groppo J D, Pellegrino G Q (2016) Analysis of trends in precipitation and temperature data in Brazil. Ver. Bras. Meteorol.. 31. 1. 64–73. https://doi.org/10.1590/0102-778620150003.
Seneviratne S I, Nichols N, Easterling D, Goodess C M, Kanae S, Kossin J, et al. (2012) Changes in climate extremes and their impacts on the natural physical environment. In C. B. Field, V. Barros, T. F. Stocker, D. Qin, D. J. Dokken, K. L. Ebi, et al. (Eds.), Managing the risks of extreme events and disasters to advance climate change adaptation. [A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change (IPCC)] (pp. 109–230). Cambridge University Press.
Scolobig A, De Marchi B, Borga M (2012) The missing link between flood risk awareness and preparedness: findings from case studies in an Alpine Region. Natural Hazards, 63, 499–520. https://doi.org/10.1007/s11069-012-0161-1v.
Shi C, Zhi-Hong J, Wei-Lin C L I L (2017) Changes in temperature extremes over China under 1.5 °C and 2 °C global warming targets. Adv. Clim. Change. Res. 9. 2. 120–129. https://doi.org/10.1016/j.accre.2017.11.003.
Siciliano W C, Bastos G P, Oliveira I T, Silva G N, Obraczka M, Ohnuma A A (2018) Spatial and temporal variability of rainfall in the municipality of Rio de Janeiro. Rev. Inter. Ciências. 8. 2. 196–208. https://doi.org/10.12957/ric.2018.33811.
Silva W L, Dereczynski C P (2014) Climatological characterization and observed trends in climatic extremes in the state of Rio de Janeiro. Anuario do Inst. Geocienc. 37. 2. https://doi.org/10.11137/2014_2_123_138.
Trenberth K E, Fasullo J T, Shepherd T G (2015) Attribution of climate extreme events. Nat Clim Change. 5. 8. 725730.
https://doi.org/10.1038/nclimate2657.
Triola M F (2005) Introduction to Statistics. 9ª Edição. Editora LTC. Rio de Janeiro. pp 656.
Varnes D J (1984) Landslide hazard zonation: a review of principles and practice. Paris: UNESCO.
Vincent L A, Zhang X, Mekis É, Wan H, Bush E J (2018) Changes in Canada's climate: Trends in indices based on daily temperature and precipitation data. Atmosphere-Ocean, 56, 332–349. https://doi.org/10.1080/07055900.2018.1514579
Wanderley H S, Carvalho A L, Fernandes R C, Souza J L (2014) Change in the Temporal Regime of Air Temperature and Rainfall in the Region of Rio Largo. Alagoas. Brazil. Rev Brasil Geog Físic. 7. 4. 662–667. https://doi.org/10.26848/rbgf.v7.4.p662-667.
Wanderley H S, Sediyama G C, Justino F B, Alencar L P Delgado R C (2013) Precipitation variability in the Sertão of San Francisco in the State of Alagoas. Rev Bras Eng Agric Ambient. 17. 7. 790–795. https://doi.org/10.1590/S1415-43662013000700014.
Wanderley H S, Bunhak A C S (2016) Alteration in precipitation and number of days without rain in the southern region of Rio de Janeiro state. Rev Brasil Geog Físic. 9. 7. 2341–2353. https://doi.org/10.5935/1984-2295.20160167.
Wanderley H S, Fernandes R C, Carvalho A L (2019) Thermal change in the city of Rio de Janeiro and the deviation caused during an intense El Niño event. Rev Brasil Geog Físic. 12. 4. 1291. https://doi.org/10.26848/rbgf.v12.4.p1291-1301.
Wanderley H S, Miguel V C (2019) Changes in meteorological elements due to the degradation of the urban forest. Cienc Florest. 29. 2. 834–843. http://dx.doi.org/10.5902/1980509832090.
Westra S, Alexandre L V, Zwiers F W (2013) Global Increasing Trends in Annual Maximum Daily Precipitation. Journal of Climate, 26, 3904-3918. https://doi.org/10.1175/JCLI-D-12-00502.1.
Zhang X, Alexander L, Hegerl G C, Jones P, Tank A K, Peterson T C, Trewin B, Zwiers F W (2011) Indices for monitoring changes in extremes based on daily temperature and precipitation data. Wiley Interdiscip Rev Clim Change. 2. 6. 851-870.
https://doi.org/10.1002/wcc.147.
Zhang W, Villarini G, Heavy (2017) Precipitation is highly sensitive to the magnitude of future warming. Climatic Change, 145, 249–257. https://doi.org/10.1007/s10584-017-2079-9.
Zhou B, Xu Y, Wu J, Dong S, Shi Y (2016) Changes in temperature and precipitation extreme indices over China: Analysis of a high-resolution grid data set. International Journal of Climatology, 36, 1051–1066.
https://doi.org/10.1002/joc.4400.