1. Gramacho ICP, Mandarino EP, Matos AS. Cultivo e beneficiamento do cacau na Bahia.
Ilhéus, BA: CEPLAC. 1992; 124.
2. Pereira JL, Ram A, Figueredo JM, Almeida LCC. Primeira ocorrência de vassoura-de-bruxa
na principal região produtora de cacau do Brasil. Agrotrópica. 1989;1(1):79-81
3. Sounigo O, Lachenaud P, Bastide P, Cilas C, N’Goran J, Lanaud C. Assessment of
the value of doubled haploids as progenitors in cocoa (Theobroma cacao L.) breeding. J Appl Genet. 2003;44(3):339–353.
4. Aime MC, Phillips-Mora W. The causal agents of witches’ broom and frosty pod rot
of cacao (chocolate, Theobroma cacao) form a new lineage of Marasmiaceae. Mycologia. 2005;97(5):1012–1022.
5. Evans HC. Witches broom disease: a case study. Cocoa Growers Bulletin. 1981; 32:5-19.
6. Evans HC. Pleomorphism in Crinipellis perniciosa, Causal Agent of Witches' Broom Disease of Cocoa. Transactions of the British Mycological
Society. 1980;74(3):515-523
7. Suárez CC. Enfermedades del cacao y su control. In SUÁREZ, C. (Ed.). Manual del
cultivo de cacao. 2. ed. Quevedo: Estación Experimental Tropical Pichilingue, Manual
técnico. 1993;25:90-106.
8. Wheeler BEJ. The growth of Crinipellis perniciosa in living and dead cocoa tissue. In: Moore D, Casselton LA, Wood DA, Frankland JC,
eds. Developmental Biology of Higher Fungi. Cambridge University Press. 1985;10:103-116.
9. Almeida H A, Luz EDMN. Influência da chuva, temperatura e umidade relativa do ar
na produção de basidiomas de Crinipellis perniciosa. Fitopatologia Brasileira. 1995;20:374
10. Mondego JM, Carazzolle MF, Costa GG, Formighieri EF, Parizzi LP, Rincones J, et
al. A genome survey of Moniliophthora perniciosa gives new insights into witches’ broom disease of cacao. BMC Genomics. 2008;9:548.
doi: 10.1186/1471-2164-9-548.
11. Barbosa CS, Fonseca RRD, Batista TM, et al. Genome sequence and effectorome of
Moniliophthora perniciosa and Moniliophthora roreri subpopulations. BMC Genomics. 2018;19(1):509. doi:10.1186/s12864-018-4875-7
12. Pires AB, Gramacho KP, Silva DC, Góes-Neto A, Silva MM, Muniz-Sobrinho JS, et
al. Early development of Moniliophthora perniciosa basidiomata and developmentally regulated genes. BMC Microbiol. 2009;9:158. doi:
10.1186/1471-2180-9-158.
13. Gesteira AS, Micheli F, Carels N, Da Silva AC, Gramacho KP, Schuster I, et al.
Comparative analysis of expressed genes from cacao meristems infected by Moniliophthora perniciosa. Ann Bot. 2007;100:129–40. doi: 10.1093/aob/mcm092.
14. Teixeira PJ, Thomazella DP, Reis O, do Prado PF, do Rio MC, Fiorin GL, José J,
Costa GG, Negri VA, Mondego JM, Mieczkowski P, Pereira GA. High-resolution transcript
profiling of the atypical biotrophic interaction between Theobroma cacao and the fungal pathogen Moniliophthora perniciosa. Plant Cell. 2014;26(11):4245-69. doi: 10.1105/tpc.114.130807.
15. Argout X, Fouet O, Wincker P, Gramacho K, Legavre T, Sabau X, et al. Towards the
understanding of the cocoa transcriptome: Production and analysis of an exhaustive
dataset of ESTs of Theobroma cacao L. generated from various tissues and under various conditions. BMC Genomics. 2008;9:512.
16. Argout X, Salse J, Aury JM, Guiltinan MJ, Droc G, Gouzy J, et al. The genome of
Theobroma cacao. Nat Genet. 2011;43:101–108. doi: 10.1038/ng.736.
17. Pandey A, Mann M. Proteomics to study genes and genomes. Nature. 2000;405:837–846.
doi: 10.1038/35015709.
18. Gygi SP, Rochon Y, Franza BR, Aebersold R. Correlation between protein and mRNA
abundance in yeast. Mol Cell Biol. 1999;19(3):1720–1730. doi: 10.1128/MCB.19.3.1720.
19. Fang X, Chen W, Xin Y, Zhang H, Yan C, Yu H, Liu H, Xiao W, Wang S, Zheng G, Liu
H, Jin L, Ma H, Ruan S. Proteomic analysis of strawberry leaves infected with Colletotrichum fragariae. J Proteomics. 2012;75:4074–4090. doi: 10.1016/j.jprot.2012.05.022.
20. Zamany A, Liu JJ, Ekramoddoullah AK. Comparative proteomic profiles of Pinus monticola
needles during early compatible and incompatible interactions with Cronartium ribicola. Planta. 2012;14:1725–1746. doi: 10.1007/s00425-012-1715-x.
21. Mandelc S, Timperman I, Radišek S, Devreese B, Samyn B, Javornik B. Comparative proteomic profiling in compatible and incompatible interactions between
hop roots and Verticillium albo-atrum. Plant Physiol Biochem. 2013;68: 23–31. doi: 10.1016/j.plaphy.2013.03.017
22. Houterman PM, Speijer D, Dekker HL CGDEK, Cornelissen BJ, Rep M. The mixed xylem
sap proteome of Fusarium oxysporum-infected tomato plants. Mol Plant Pathol. 2007;8(2):215–221. doi: 10.1111/j.1364-3703.2007.00384.x.
23. Chivasa S, Hamilton JM, Pringle RS, Ndimba BK, Simon WJ, Lindsey K, et al. Proteomic analysis of differentially expressed proteins in fungal elicitor-treated
Arabidopsis cell cultures. J Exp Bot. 2006; 57: 1553–1562. doi: 10.1093/jxb/erj149.
24. Mares JH, Gramacho KP, Santos EC, et al. Proteomic analysis during of spore germination
of Moniliophthora perniciosa, the causal agent of witches’ broom disease in cacao. BMC Microbiology. 2017;17:176.
doi:10.1186/s12866-017-1085-4.
25. Mares JH, et al. Protein profile and protein interaction network of Moniliophthora perniciosa basidiospores. BMC Microbiol. 2016;16(1):120. doi: 10.1186/s12866-016-0753-0.
26. Pierre S, Griffith GW, Morphew RM, Mur LAJ, Scott IM. Saprotrophic proteomes of
biotypes of the witches' broom pathogen Moniliophthora perniciosa. Fungal Biol. 2017;121(9):743-753.
doi: 10.1016/j.funbio.2017.05.004.
27. Pirovani CP, Carvalho HA, Machado RC, Gomes DS, Alvim FC, Pomella AW, Gramacho
KP, Cascardo JC, Pereira GA, Micheli F. Protein extraction for proteome analysis from
cacao leaves and meristems, organs infected by Moniliophthora perniciosa, the causal agent of the witches’ broom disease. Electrophoresis. 2008;29:391–401. doi: 10.1002/elps.200700743.
28. Niemenak N, Kaiser E, Maximova SN, Laremore T, Guiltinan MJ. Proteome analysis
during pod, zygotic and somatic embryo maturation of Theobroma cacao. J Plant Physiol. 2015;180:49–60. doi: 10.1016/j.jplph.2015.02.011.
29. Wang L, Nägele T, Doerfler H, Fragner L, Chaturvedi P, Nukarinen E, Bellaire A,
Huber W, Weiszmann J, Engelmeier D. et al. System level analysis of cacao seed ripening
reveals a sequential interplay of primary and secondary metabolism leading to polyphenol
accumulation and preparation of stress resistance. Plant J. 2016;87:318–332. doi: 10.1111/tpj.13201.
30. Almeida DSM, Gramacho KP, Cardoso THS, Micheli F, Alvim FC, Pirovani CP. Cacao
phylloplane: the first battlefield against Moniliophthora perniciosa, which causes witches’ broom disease. Phytopathology. 2017;107(7):864–871. doi: 10.1094/PHYTO-06-16-0226-R.
31. Silva SDVM, Luz EDMN, Almeida OC, et al. Redescrição da sintomatologia causada por Crinipellis perniciosa em cacaueiro. Agrotrópica. 2002;14(1):1-28.
32.Ceita GO, Macêdo JNA, Santos TB, Alemanno L, Gesteira AS, Micheli F, Mariano AC,
Gramacho KP, Silva DC, Meinhardt LW, Mazzafera P, Pereira GAG, Cascardo JM: Involvement
of calcium oxalate degradation during programmed cell death in Theobroma cacao tissues
triggered by the hemibiotrophic fungus Moniliophthora perniciosa. Plant Sci. 2007;173(2):106-117.
doi: 10.1016/j.plantsci.2007.04.006.
33. Yan J, He H, Tong S, Zhang W, Wang J, Li X, Yang Y. Voltage-dependent anion channel
2 of Arabidopsis thaliana (AtVDAC2) is involved in ABA-mediated early seedling development. Int. J. Mol. Sci. 2009;10:2476–2486. doi: 10.3390/ijms10062476
34. Tateda C, Yamashita K, Takahashi F, Kusano T. and Takahashi Y. Plant voltage‐dependent anion channels are involved in host defense against Pseudomonas cichorii and in Bax‐induced cell death. Plant Cell Rep. 2009;28:41–51. doi: 10.1007/s00299-008-0630-x.
35. Talon M, Gmitter FG: Citrus Genomics. Int J Plant Genomics. 2008. 2008: 528361-
doi: 10.1155/2008/528361
36. Tsukuda S, Gomi K, Yamamoto H, Akimitsu K. Characterization of cDNAs encoding
two distinct miraculin-like proteins and stress-related modulation of the corresponding
mRNAs in Citrus jambhiri Lush. Plant Mol Biol. 2006;60:125–136. doi: 10.1007/s11103-005-2941-4.
37. Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, Simonovic
M, Roth A, Santos A, Tsafou KP, et al. STRING v10: protein–protein interaction networks,
integrated over the tree of life. Nucleic Acids Res. 2015;43:D447–D452. doi: 10.1093/nar/gku1003.
38. Elstner EF, Oxygen activation and oxygen toxicity. Annual Review of plant Physiology.
1982;33:3-96. doi: 10.1146/annurev.pp.33.060182.000445
39. Quan LJ, Zhang B, Shi WW, Li HY. Hydrogen peroxide in plants: a versatile molecule
of the reactive oxygen species network. J lntegr. Plant Biol. 2008;50(1):2–18. doi: 10.1111/j.1744-7909.2007.00599.x.
40. Dias CV, Mendes JS, dos Santos AC, Pirovani CP, da Silva GA, Micheli F, et al.
Hydrogen peroxide formation in cacao tissues infected by the hemibiotrophic fungus
Moniliophthora perniciosa. Plant Physiol Biochem. 2011;49(8):917–922. doi: 10.1016/j.plaphy.2011.05.004.
41. Camillo LR. Tc-cAPX, a cytosolic ascorbate peroxidase of Theobroma cacao L. engaged
in the interaction with Moniliophthora perniciosa, the causing agent of witches' broom
disease. Plant Physiology and Biochemistry. 2013;73:254–265. doi: 10.1016/j.plaphy.2013.10.009.
42. Horns F, Hood ME. The evolution of disease resistance and tolerance in spatially
structured populations. Ecology and Evolution. 2012;2:1705–1711. doi: 10.1002/ece3.290.
43. Neilson EH, Goodger JQD, Woodrow IE, et al. Plant chemical defense: at what cost?. Trends in Plant Science. 2013;18(5) 250-258.
doi: 10.1016/j.tplants.2013.01.001
44. da Hora Junior BT, Poloni JF, Lopes MA, Dias CV, Gramacho KP, Schuster I, Sabau
X, Cascardo JCDM, Mauro SMZD, Gesteira AS, Bonatto D, Micheli F. Transcriptomics and
systems biology analysis in identification of specific pathways involved in cacao
resistance and susceptibility to witches’ broom disease. Mol Biosyst. 2012;8(5):1507–1519. doi: 10.1039/c2mb05421c.
45. Anderson L, Seilhamer J. A comparison of selected mRNA and protein abundances
in human liver. Electrophoresis. 1997;18(3–4):533–537. doi: 10.1002/elps.1150180333.
46. Greenbaum D, Colangelo C, Williams K, Gerstein M. Comparing protein abundance
and mRNA expression levels on a genomic scale. Genome Biol. 2003;4(9):117. doi: 10.1186/gb-2003-4-9-117.
47. Seo J, Lee KJ. Post-translational modifications and their biological functions:
proteomic analysis and systematic approaches. J Biochem Mol Biol. 2004;37:35–44. doi: 10.5483/BMBRep.2004.37.1.035.
48. Laurent JM, Vogel C, Kwon T, Craig SA, Boutz DR, Huse HK, et al. Protein abundances
are more conserved than mRNA abundances across diverse taxa. Proteomics. 2010;10:4209–12. doi: 10.1002/pmic.201000327.
49. Bailey-Serres JRM. The roles of reactive oxygen species in plant cells. Plant Physiol. 2006;141:311. doi: 10.1104/pp.104.900191.
50. Mittler R. Oxidative stress, antioxidants and stress tolerance. Trends Plant Science.
2002;7(9):405–410. doi: 10.1016/S1360-1385(02)02312-9.
51. Dastoor, Z.; Dreyer, J. Nuclear translocation and aggregate formation of heat
shock cognate protein 70 (Hsc70) in oxidative stress and apoptosis Journal of Cell
Science. 2000;113:2845-2854.
52. Holtgrefe S, Gohlke J, Starmann J, Druce S, Klocke S, Altmann B, et al. Regulation
of plant cytosolic glyceraldehyde 3-phosphate dehydrogenase isoforms by thiol modifications.
Physiol Plant. 2008;133:211–228. doi: 10.1111/j.1399-3054.2008.01066.x.
53. Guo L, Devaiah SP, Narasimhan R, Pan X, Zhang Y, Zhang W, Wang X. Cytosolic glyceraldehyde-3-phosphate
dehydrogenases interact with phospholipase Dδ to transduce hydrogen peroxide signals
in the Arabidopsis response to stress. Plant Cell. 2012;24(5):2200–2212. doi: 10.1105/tpc.111.094946.
54. Sena K, Alemanno L, Gramacho KP: The infection process of Moniliophthora perniciosa in cacao. Plant Pathol. 2014; 63(3):1272–1281. doi:10.1111/ppa.12224
55. Swarbrick PJ, Schulze-Lefert P, Scholes JD. Metabolic consequences of susceptibility
and resistance (race-specific and broad-spectrum) in barley leaves challenged with
powdery mildew. Plant Cell Environ. 2006;29:1061–76. doi: 10.1111/j.1365-3040.2005.01472.x.
56. Berger S, Sinha AK, Roitsch T. Plant physiology meets phytopathology: plant primary
metabolism and plant-pathogen interactions. J Exp Bot. 2007;58(15–16):4019–4026. doi: 10.1093/jxb/erm298.
57. Wu L, Han Z, Wang S, Wang X, Sun A, Zu X, et al. Comparative proteomic analysis of the plant-virus interaction in resistant and susceptible
ecotypes of maize infected with sugarcane mosaic virus. J. Proteomics. 2013;89:124–140. doi: 10.1016/j.jprot.2013.06.005
58. Zadražnik T, Hollung K, Egge-Jacobsen W, Meglič V, Šuštar-Vozlič J. Differential
proteomic analysis of drought stress response in leaves of common bean (Phaseolus vulgaris L.) J Proteome. 2013;78:254–272. doi: 10.1016/j.jprot.2012.09.021.
59. Scarpari LM, Meinhardt LW, Mazzafera P, Pomella AW, Schiavinato MA, Cascardo JC,
Pereira GA. Biochemical changes during the development of witches' broom: the most
important disease of cocoa in Brazil caused by Crinipellis perniciosa. J Exp Bot. 2005;56:865–877. doi: 10.1093/jxb/eri079.
</p>
60. Orchard J, Hardwick K. Photosynthesis, carbohydrate translocation and metabolism
of host and fungal tissues in cacao seedlings infected with Crinipellis perniciosa.
In: Proceedings of the 10th International Cocoa Research Conference. Santo Domingo.
1988; 325.
61. Meinhardt LW, Bellato CM, Rincones J, Azevedo RA, Cascardo JC, Pereira GA. In
vitro production of biotrophic-like cultures of Crinipellis perniciosa, the causal agent of witches' broom disease of Theobroma cacao. Curr Microbiol. 2006;52:191–196. doi: 10.1007/s00284-005-0182-z.
62. Major IT, Nicole MC, Duplessis S, Séguin A. Photosynthetic and respiratory changes in leaves of poplar elicited by rust infection. Photosynth. Res. 2010;104:41–48. doi: 10.1007/s11120-009-9507-2
63. Zamany A, Liu JJ, Ekramoddoullah AK. Comparative proteomic profiles of Pinus monticola
needles during early compatible and incompatible interactions with Cronartium ribicola.
Planta. 2012;236:725–1746. doi: 10.1007/s00425-012-1715-x.
64. Wan J, Pentecost G. Potential Application of Chitin Signaling in Engineering Broad-Spectrum
Disease Resistance to Fungal and Bacterial Pathogens in Plants. Advances in Crop Science
and Technology. 2013;1(2):100-103. doi: 10.4172/2329-8863.1000e103
65. Robert N, Roche K, Lebeau Y, Breda C, Boulay M, Esnault R, et al. Expression of
grapevine chitinase genes in berries and leaves infected by fungal or bacterial pathogens.
Plant Sci. 2002;162(3):389–400. doi: 10.1016/S0168-9452(01)00576-3
66. Miya A, Albert P, Shinya T, Desaki Y, Ichimura K, Shirasu K, Narusaka Y, Kawakami
N, Kaku H, Shibuya N. CERK1, a LysM receptor kinase, is essential for chitin elicitor
signaling in Arabidopsis. Proc Natl Acad Sci. 2007;104(49):19613–19618. doi: 10.1073/pnas.0705147104.
67. Shin S, Mackintosh CA, Lewis J, et al. Transgenic wheat expressing a barley class
II chitinase gene has enhanced resistance against Fusarium graminearum. J Exp Bot. 2008;59(9):2371-8. doi: 10.1093/jxb/ern103
68. Wan J, Zhang XC, Stacey G. Chitin signaling and plant disease resistance. Plant Signal Behav. 2008;3:831–3. doi: 10.4161/psb.3.10.5916.
69. Bezirganoglu I, Hwang SY, Fang TJ, Shaw JF. Transgenic lines of melon (Cucumis
melo L. var. makuwa cv. ‘Silver Light’) expressing antifungal protein and chitinase
genes exhibit enhanced resistance to fungal pathogens. Plant Cell Tissue Organ Cult
(PCTOC). 2013;112(2):227–237.
70. Fiorin GL, Sanchéz-Vallet A, Thomazella DPT, do Prado PFV, do Nascimento LC, Figueira
AVO, Thomma BPHJ, Pereira GAG, Teixeira PJPL. Suppression of Plant Immunity by Fungal
Chitinase-like Effectors. Curr Biol. 2018 Sep 24;28(18):3023-3030.e5. doi: 10.1016/j.cub.2018.07.055.
71. Barsottini MRO, Oliveira JF, Adamoski D, Teixeira PJPL, Prado PFV, Tiezzi HO,
et al. Functional diversification of cerato-platanins in Monilliophthora perniciosa as seen by differential expression and protein function specialization. Mol Plant Microbe Interact. 2013;26:1281–93. doi: 10.1094/MPMI-05-13-0148-R.
72. Baccelli I. Cerato-platanin family proteins: one function for multiple biological
roles? Front Plant Sci. 2015;5:769. doi: 10.3389/fpls.2014.00769.
73. Koers S, Guzel-Deger A, Marten I, Roelfsema MR. Barley mildew and its elicitor chitosan promote closed stomata by stimulating guard-cell
S-type anion channels. The Plant journal. 2011;68(4):670–80. doi: 10.1111/j.1365-313X.2011.04719.x
74. Van Loon LC, Van Strien EA. The families of pathogenesis-related proteins, their
activities, and comparative analysis of PR-1 type proteins. Physiological and Molecular
Plant Pathology. 1999; 55:85-97. doi: 10.1006/pmpp.1999.0213
75. Van Loon L, Rep M, Pieterse C, Pieterse C. Significance of inducible defense-related
proteins in infected plants. Annu Rev Phytopathol. 2006;44:135–162. doi: 10.1146/annurev.phyto.44.070505.143425.
76. Husaini AM, Zainul Abdin M. Overexpression of tobacco osmotin gene leads to salt
stress tolerance in strawberry (Fragaria × ananassa Duch.) plants. Ind J Plant Biotech. 2008;7:465–471.
77. Abdin MZ, Kiran U, Alam A. Analysis of osmotin, a PR protein as metabolic modulator
in plants. Bioinformation. 2011;5:336–340.
78. Abada LR, D'urzo MP, Liu D, et al. Antifungal activity of tobacco osmotin has specificity and involves plasma membrane
permeabilization. Plant Science. 1996;118(1)11–23. doi: 10.1016/0168-9452(96)04420-2
79. Mahdavi F, Sariah M, Maziah M. Expression of Rice Thaumatin-Like Protein Gene
in Transgenic Banana Plants Enhances Resistance to Fusarium Wilt. Appl Biochem Biotechnol. 2012;166:1008–1019. doi: 10.1007/s12010-011-9489-3.
80. Acharya K, Pal AK, Gulati A, Kumar S, Singh AK, Ahuja PS. Overexpression of Camellia sinensis thaumatin-like protein, CsTLP in potato confers enhanced resistance to Macrophomina phaseolina and Phytophthora infestans infection. Mol Biotechnol. 2013;54:609–622. doi: 10.1007/s12033-012-9603-y.
81. Lu H, Rate DN, Song JT, Greenberg JT. ACD6, a novel ankyrin protein, is a regulator
and an effector of salicylic acid signaling in the Arabidopsis defense response. Plant Cell. 2003;15:2408–2420. doi: 10.1105/tpc.015412.
82. Dong X. The role of membrane-bound ankyrin-repeat protein acd6 in programmed cell
death and plant defense. Science’s STKE. 2004;6p. doi: 10.1126/stke.2212004pe6
83. Ryan CA. Proteinase inhibitors in plants: genes for improving defenses against
insects and pathogens. Annual Review of Phytopatology. 1990;28:425–449. doi: 10.1146/annurev.py.28.090190.002233
84. Srinivasan T, Kumar KRR, Kirti PB. Constitutive expression of a trypsin protease
inhibitor confers multiple stress tolerance in transgenic tobacco. Plant Cell Physiol. 2009;50:541–553. doi: 10.1093/pcp/pcp014.
85. Rincones J, Scarpari LM, Carazzolle MF, Mondego JMC, Formighieri EF, Barau JG,
et al. Differential gene expression between the biotrophic-like and saprotrophic mycelia
of the witches’ broom pathogen Moniliophthora perniciosa. Mol Plant-Microbe Interact. 2008;21:891–908. doi: 10.1094/MPMI-21-7-0891.
86. Cipriano AK, Gondim DM, Vasconcelos IM, Martins JA, Moura AA, Moreno FB, et al.
Proteomic analysis of responsive stem proteins of resistant and susceptible cashew
plants after Lasiodiplodia theobromae infection. J Proteomics. 2015;113:90–109. doi: 10.1016/j.jprot.2014.09.022.
87. Di Silvestre D, Bergamaschi A, Bellini E, Mauri P. Large Scale Proteomic Data
and Network-Based Systems Biology Approaches to Explore the Plant World. Proteomes.
2018;6(2):27. doi:10.3390/proteomes6020027
88. Iqbal MJ, Majeed M, Humayun M, Lightfoot DA, Afzal AJ. Proteomic profiling and
the predicted interactome of host proteins in compatible and incompatible interactions
between soybean and Fusarium virguliforme. Appl. Biochem. Biotechnol. 2016;180:1657–1674. doi: 10.1007/s12010-016-2194-5
89. De Las Rivas J, Fontanillo C.
Protein-protein interactions essentials: key concepts to building and analyzing interactome
networks.
PLoS computational biology. 2010;
6(
6):e1000807. doi: 10.1371/journal.pcbi.1000807
90. Singer GA, Lloyd AT, Huminiecki LB, Wolfe KH. Clusters of co-expressed genes in
mammalian genomes are conserved by natural selection. Mol Biol Evol. 2005;22(3):767–775. doi: 10.1093/molbev/msi062.
91. Pagel P, Mewes HW, Frishman D. Conservation of protein-protein interactions--lessons
from ascomycota. Trends Genet. 2004;20:72–76. doi: 10.1016/j.tig.2003.12.007.
92. De Bodt S, Proost S, Vandepoele K, Rouze P, Van de Peer Y: Predicting protein-protein
interactions in Arabidopsis thaliana through integration of orthology, gene ontology
and co-expression. BMC Genomics 2009, 10: 288. 10.1186/1471-2164-10-288
93. Lopes UV, Monteiro WR, Pires JL, Clement D, Yamada MM, Gramacho KP. Cacao breeding
in Bahia, Brazil - strategies and results. Crop Breeding and Applied Biotechnology
. 2001; S1: 73-81. doi: 0.1590/S1984-70332011000500011
94. Pires JL, Rosa E S, Macedo MM. Avaliação de clones de cacaueiro na Bahia, Brasil.
Agrotrópica (Itabuna). 2012; v. 24, p. 79-84.
95. Surujedeo-Maharaj S, Umaharan P, Butler DR, Sreenivasan TN. An optimized screening
method for identifying levels of resistance to Crinipellis perniciosa in cocoa (Theobroma cacao). Plant pathology. 2003;52(4):464–475. doi: 10.1046/j.1365-3059.2003.00865.x
96. Silva FAC, Pirovani CP, Menezes SP, Pungartnik C, Santiago AS, Costa MGC. Proteomic
response of Moniliophthora perniciosa exposed to pathogenesis-related protein-10 from Theobroma cacao. GMR. 2013;12:4855–68. doi: 10.4238/2013.October.22.5.
97. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search
tool. J Mol Biol. 1990;215(3):403-10. doi: 10.1016/S0022-2836(05)80360-2