1 National Cancer Institute,. Cancer.gov en español2 (2018).
2 Leukemia. American Society of Hematology.1 (2017).
3 Asthana, S., Labani, S., Mehrana, S. & Bakhshi, S. Incidence of childhood leukemia and lymphoma in India. Pediatric Hematology Oncology Journal (2018).
4 Chokkalingam, A. P. & Buffler, P. A. Genetic susceptibility to childhood leukaemia. Radiation protection dosimetry132, 119-129 (2008).
5 Bhat, A. A. et al. Role of non-coding RNA networks in leukemia progression, metastasis and drug resistance. Molecular Cancer19, 1-21 (2020).
6 Bhat, G. R. et al. Association of newly identified genetic variant rs2853677 of TERT with non-small cell lung cancer and leukemia in population of Jammu and Kashmir, India. BMC cancer19, 1-8 (2019).
7 Bhat, A. et al. Association of ARID5B and IKZF1 variants with leukemia from Northern India. Genetic testing and molecular biomarkers23, 176-179 (2019).
8 Gu, J. et al. Identification of significant pathways induced by PAX5 haploinsufficiency based on protein-protein interaction networks and Cluster analysis in Raji Cell Line. BioMed research international2017 (2017).
9 Fazio, G., Biondi, A. & Cazzaniga, G. in Novel Aspects in Acute Lymphoblastic Leukemia (IntechOpen, 2011).
10 Yan, M. et al. Development of cellular immune responses against PAX5, a novel target for cancer immunotherapy. Cancer research68, 8058-8065 (2008).
11 Tiacci, E. et al. PAX5 expression in acute leukemias: higher B-lineage specificity than CD79a and selective association with t (8; 21)-acute myelogenous leukemia. Cancer Research64, 7399-7404 (2004).
12 Carotta, S., Holmes, M., Pridans, C. & Nutt, S. L. Pax5 maintains cellular identity by repressing gene expression throughout B cell differentiation. Cell Cycle5, 2452-2456 (2006).
13 Cobaleda, C., Jochum, W. & Busslinger, M. Conversion of mature B cells into T cells by dedifferentiation to uncommitted progenitors. Nature449, 473 (2007).
14 Santoro, A. et al. Altered mRNA expression of PAX5 is a common event in acute lymphoblastic leukaemia. British journal of haematology146, 686-689 (2009).
15 Nebral, K. et al. Incidence and diversity of PAX5 fusion genes in childhood acute lymphoblastic leukemia. Leukemia23, 134 (2009).
16 Bousquet, M. et al. A novel PAX5-ELN fusion protein identified in B-cell acute lymphoblastic leukemia acts as a dominant negative on wild-type PAX5. Blood109, 3417-3423 (2007).
17 Fazio, G., Palmi, C., Rolink, A., Biondi, A. & Cazzaniga, G. PAX5/TEL acts as a transcriptional repressor causing down-modulation of CD19, enhances migration to CXCL12, and confers survival advantage in pre-BI cells. Cancer research68, 181-189 (2008).
18 Thomas-Tikhonenko, A. & Cozma, D. PAX5 and B-cell neoplasms: transformation through presentation. (2008).
19 Zwollo, P. et al. The Pax-5 gene is alternatively spliced during B-cell development. Journal of Biological Chemistry272, 10160-10168 (1997).
20 Arseneau, J. R., Laflamme, M., Lewis, S. M., Maïcas, E. & Ouellette, R. J. Multiple isoforms of PAX5 are expressed in both lymphomas and normal B‐cells. British journal of haematology147, 328-338 (2009).
21 Moriyama, T., Relling, M. V. & Yang, J. J. Inherited genetic variation in childhood acute lymphoblastic leukemia. Blood125, 3988-3995 (2015).
22 Tasian, S. K. & Hunger, S. P. Genomic characterization of paediatric acute lymphoblastic leukaemia: an opportunity for precision medicine therapeutics. British journal of haematology176, 867-882 (2017).
23 Drozdetskiy, A., Cole, C., Procter, J. & Barton, G. J. J. N. a. r. JPred4: a protein secondary structure prediction server. 43, W389-W394 (2015).
24 Källberg, M., Margaryan, G., Wang, S., Ma, J. & Xu, J. in Protein Structure Prediction 17-27 (Springer, 2014).
25 Bateman, A. et al. The Pfam protein families database. 32, D138-D141 (2004).
26 Gehring, W. J. J. T. i. b. s. The homeobox in perspective. 17, 277-280 (1992).
27 Gu, Z. et al. PAX5-driven subtypes of B-progenitor acute lymphoblastic leukemia. Nature genetics51, 296-307 (2019).
28 Passet, M. et al. PAX5 P80R mutation identifies a novel subtype of B-cell precursor acute lymphoblastic leukemia with favorable outcome. blood133, 280-284 (2019).
29 Firtina, S. et al. Evaluation of PAX5 gene in the early stages of leukemic B cells in the childhood B cell acute lymphoblastic leukemia. Leukemia research36, 87-92 (2012).
30 Auer, F. et al. Inherited susceptibility to pre B-ALL caused by germline transmission of PAX5 c. 547G> A. Leukemia28, 1136-1138 (2014).
31 Khalid, A., Aslam, S., Ahmed, M., Hasnain, S. & Aslam, A. Risk assessment of FLT3 and PAX5 variants in B-acute lymphoblastic leukemia: a case–control study in a Pakistani cohort. PeerJ7, e7195 (2019).
32 Delogu, A. et al. Gene repression by Pax5 in B cells is essential for blood cell homeostasis and is reversed in plasma cells. Immunity24, 269-281 (2006).
33 Kurahashi, S. et al. PAX5–PML acts as a dual dominant-negative form of both PAX5 and PML. Oncogene30, 1822 (2011).
34 Desouki, M. M., Post, G. R., Cherry, D. & Lazarchick, J. PAX-5: a valuable immunohistochemical marker in the differential diagnosis of lymphoid neoplasms. Clinical medicine & research8, 84-88 (2010).
35 Gasser, R. B. et al. Single-strand conformation polymorphism (SSCP) for the analysis of genetic variation. Nature protocols1, 3121 (2006).
36 Spinardi, L., Mazars, R. & Theillet, C. Protocols for an improved detection of point mutations by SSCP. Nucleic acids research19, 4009 (1991).