[1] Mao Q, Zeng C, Zheng D, et al. Analysis on spatio-temporal distribution characteristics
of smear positive pulmonary tuberculosis in China, 2004–2015. International Journal
of Infectious Diseases 2019; 80: S36-S44.
[2] Dheda K, Maartens G. Tuberculosis. Lancet, 2016, 387(10024):1211-1226.
[3] Reid M J A, Arinaminpathy N, Bloom A, et al. Building a tuberculosis-free world:
The Lancet Commission on tuberculosis. The Lancet 2019; 393(10178): 1331-1384.
[4] World Health Organization. Global tuberculosis report 2015. World Health Organization
2015.
[5] Iravatham C C, Neela V S K, Valluri V L. Identifying and mapping TB hot spots in
an urban slum by integratingGeographic positioning system and the local postman–A
pilot study. Indian Journal of Tuberculosis 2019; 66(1): 203-208.
[6] Hu L, Griffith D, Chun Y. Space-Time Statistical Insights about Geographic Variation
in Lung Cancer Incidence Rates: Florida, USA, 2000–2011. International journal of
environmental research and public health 2018; 15(11): 2406.
[7] Vindenes T, Jordan M R, Tibbs A, et al. A genotypic and spatial epidemiologic analysis
of Massachusetts' Mycobacterium tuberculosis cases from 2012 to 2015. Tuberculosis
2018; 112: 20-26.
[8] Cheng J, Zhang H, Zhao Y L, et al. Mutual impact of diabetes mellitus and tuberculosis
in China. Biomedical and Environmental Sciences 2017; 30(5): 384-389.
[9] Ni W, Yan M A, Liu Y H, et al. Risk of Treatment Failure in Patients with Drug-susceptible
Pulmonary Tuberculosis in China. Biomedical and Environmental Sciences 2016; 29(8):
612-617.
[10] Zheng Y L, Zhang L P, Zhang X L, et al. Forecast model analysis for the morbidity
of tuberculosis in Xinjiang, China. PloS one 2015; 10(3): e0116832.
[11] Wubuli A, Xue F, Jiang D, et al. Socio-demographic predictors and distribution
of pulmonary tuberculosis (TB) in Xinjiang, China: A spatial analysis. PloS one 2015;
10(12): e0144010.
[12] Cao Z G, Li S, Zhao Y E, et al. Spatio-temporal pattern of schistosomiasis in
Anhui Province, East China: Potential effect of the Yangtze River-Huaihe River Water
Transfer Project. Parasitology international 2018; 67(5): 538-546.
[13] Ekong P S, Ducheyne E, Carpenter T E, et al. Spatio-temporal epidemiology of
highly pathogenic avian influenza (H5N1) outbreaks in Nigeria, 2006–2008. Preventive
veterinary medicine 2012; 103(2-3): 170-177.
[14] Tang J H, Tseng T J, Chan T C. Detecting spatio-temporal hotspots of scarlet
fever in Taiwan with spatio-temporal Gi* statistic. PloS one 2019; 14(4): e0215434.
[15] Zhang Y, Wang X L, Feng T, et al. Analysis of spatial-temporal distribution and
influencing factors of pulmonary tuberculosis in China, during 2008–2015. Epidemiology
& Infection 2019; 147.
[16] Sun W, Gong J, Zhou J, et al. A spatial, social and environmental study of tuberculosis
in China using statistical and GIS technology. International journal of environmental
research and public health 2015; 12(2): 1425-1448.
[17] Rao H X, Zhang X, Zhao L, et al. Spatial transmission and meteorological determinants
of tuberculosis incidence in Qinghai Province, China: a spatial clustering panel analysis.
Infectious diseases of poverty 2016; 5(1): 45.
[18] Liu M Y, Li Q H, Zhang Y J, et al. Spatial and temporal clustering analysis of
tuberculosis in the mainland of China at the prefecture level, 2005–2015. Infectious
diseases of poverty 2018; 7(1): 106.
[19] Islam A R M T, Ahmed N, Bodrud-Doza M, et al. Characterizing groundwater quality
ranks for drinking purposes in Sylhet district, Bangladesh, using entropy method,
spatial autocorrelation index, and geostatistics. Environmental Science and Pollution
Research 2017; 24(34): 26350-26374.
[20] Lai P C, Low C T, Tse W S, et al. Risk of tuberculosis in high-rise and high
density dwellings: an exploratory spatial analysis. Environmental Pollution 2013;
183:40-45.
[21] Eastwood J G, Jalaludin B B, Kemp L A, et al. Clusters of maternal depressive
symptoms in South Western Sydney, Australia. Spatial and spatio-temporal epidemiology
2013; 4: 25-31.
[22] Roth D, Otterstatter M , Wong J , et al. Identification of spatial and cohort
clustering of tuberculosis using surveillance data from British Columbia, Canada,
1990-2013. Social Science & Medicine 2016; 168:214-222.
[23] A comparison of three approaches to identify West Nile Virus mosquito space-time
hotspots in the Houston Vicinity for the period 2002-2011. Applied Geography 2014;
51:58-64.
[24] Ekong P S , Ducheyne E , Carpenter T E , et al. Spatio-temporal epidemiology
of highly pathogenic avian influenza (H5N1) outbreaks in Nigeria, 2006-2008. Preventive
Veterinary Medicine 2012; 103(2-3):170-177.