1 Thompson, W. W. et al. Mortality associated with influenza and respiratory syncytial virus in the United States. JAMA 289, 179-186, doi:10.1001/jama.289.2.179 (2003).
2 Wu, Z. & McGoogan, J. M. Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72314 Cases From the Chinese Center for Disease Control and Prevention. JAMA, doi:10.1001/jama.2020.2648 (2020).
3 Pillai, P. S. et al. Mx1 reveals innate pathways to antiviral resistance and lethal influenza disease. Science 352, 463-466, doi:10.1126/science.aaf3926 (2016).
4 Molony, R. D. et al. Aging impairs both primary and secondary RIG-I signaling for interferon induction in human monocytes. Sci Signal 10, doi:10.1126/scisignal.aan2392 (2017).
5 Claesson, M. J. et al. Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proc Natl Acad Sci U S A 108 Suppl 1, 4586-4591, doi:10.1073/pnas.1000097107 (2011).
6 Xu, C., Zhu, H. & Qiu, P. Aging progression of human gut microbiota. BMC Microbiol 19, 236, doi:10.1186/s12866-019-1616-2 (2019).
7 Shin, J. et al. Ageing and rejuvenation models reveal changes in key microbial communities associated with healthy ageing. Microbiome 9, 240, doi:10.1186/s40168-021-01189-5 (2021).
8 Waalen, J. & Buxbaum, J. N. Is older colder or colder older? The association of age with body temperature in 18,630 individuals. J Gerontol A Biol Sci Med Sci 66, 487-492, doi:10.1093/gerona/glr001 (2011).
9 Steed, A. L. et al. The microbial metabolite desaminotyrosine protects from influenza through type I interferon. Science 357, 498-502, doi:10.1126/science.aam5336 (2017).
10 Rosshart, S. P. et al. Wild Mouse Gut Microbiota Promotes Host Fitness and Improves Disease Resistance. Cell 171, 1015-1028 e1013, doi:10.1016/j.cell.2017.09.016 (2017).
11 Moriyama, M. & Ichinohe, T. High ambient temperature dampens adaptive immune responses to influenza A virus infection. Proc Natl Acad Sci U S A 116, 3118-3125, doi:10.1073/pnas.1815029116 (2019).
12 Stefan, K. L., Kim, M. V., Iwasaki, A. & Kasper, D. L. Commensal Microbiota Modulation of Natural Resistance to Virus Infection. Cell, doi:10.1016/j.cell.2020.10.047 (2020).
13 Kudo, E. et al. Low ambient humidity impairs barrier function and innate resistance against influenza infection. Proc Natl Acad Sci U S A 116, 10905-10910, doi:10.1073/pnas.1902840116 (2019).
14 Goldberg, E. L. et al. Ketogenic diet activates protective gammadelta T cell responses against influenza virus infection. Sci Immunol 4, doi:10.1126/sciimmunol.aav2026 (2019).
15 Moriyama, M., Hugentobler, W. J. & Iwasaki, A. Seasonality of Respiratory Viral Infections. Annu Rev Virol 7, 83-101, doi:10.1146/annurev-virology-012420-022445 (2020).
16 Foxman, E. F. et al. Temperature-dependent innate defense against the common cold virus limits viral replication at warm temperature in mouse airway cells. Proc Natl Acad Sci U S A 112, 827-832, doi:10.1073/pnas.1411030112 (2015).
17 Foxman, E. F., Storer, J. A., Vanaja, K., Levchenko, A. & Iwasaki, A. Two interferon-independent double-stranded RNA-induced host defense strategies suppress the common cold virus at warm temperature. Proc Natl Acad Sci U S A 113, 8496-8501, doi:10.1073/pnas.1601942113 (2016).
18 Boonarkart, C., Suptawiwat, O., Sakorn, K., Puthavathana, P. & Auewarakul, P. Exposure to cold impairs interferon-induced antiviral defense. Arch Virol 162, 2231-2237, doi:10.1007/s00705-017-3334-0 (2017).
19 Lowen, A. C., Mubareka, S., Steel, J. & Palese, P. Influenza virus transmission is dependent on relative humidity and temperature. PLoS Pathog 3, 1470-1476, doi:10.1371/journal.ppat.0030151 (2007).
20 Lowen, A. C., Steel, J., Mubareka, S. & Palese, P. High temperature (30 degrees C) blocks aerosol but not contact transmission of influenza virus. J Virol 82, 5650-5652, doi:10.1128/JVI.00325-08 (2008).
21 Sanchez-Alavez, M., Alboni, S. & Conti, B. Sex- and age-specific differences in core body temperature of C57Bl/6 mice. Age (Dordr) 33, 89-99, doi:10.1007/s11357-010-9164-6 (2011).
22 Toapanta, F. R. & Ross, T. M. Impaired immune responses in the lungs of aged mice following influenza infection. Respir Res 10, 112, doi:10.1186/1465-9921-10-112 (2009).
23 Trompette, A. et al. Dietary Fiber Confers Protection against Flu by Shaping Ly6c(-) Patrolling Monocyte Hematopoiesis and CD8(+) T Cell Metabolism. Immunity 48, 992-1005 e1008, doi:10.1016/j.immuni.2018.04.022 (2018).
24 Chevalier, C. et al. Gut Microbiota Orchestrates Energy Homeostasis during Cold. Cell 163, 1360-1374, doi:10.1016/j.cell.2015.11.004 (2015).
25 Hupfauf, S. et al. Temperature shapes the microbiota in anaerobic digestion and drives efficiency to a maximum at 45 degrees C. Bioresour Technol 269, 309-318, doi:10.1016/j.biortech.2018.08.106 (2018).
26 Imai, M. et al. Syrian hamsters as a small animal model for SARS-CoV-2 infection and countermeasure development. Proc Natl Acad Sci U S A 117, 16587-16595, doi:10.1073/pnas.2009799117 (2020).
27 Simon, M., Veit, M., Osterrieder, K. & Gradzielski, M. Surfactants - Compounds for inactivation of SARS-CoV-2 and other enveloped viruses. Curr Opin Colloid Interface Sci 55, 101479, doi:10.1016/j.cocis.2021.101479 (2021).
28 Murakami, K. et al. Bile acids and ceramide overcome the entry restriction for GII.3 human norovirus replication in human intestinal enteroids. Proc Natl Acad Sci U S A 117, 1700-1710, doi:10.1073/pnas.1910138117 (2020).
29 Ito, K. et al. Dual Agonist of Farnesoid X Receptor and Takeda G Protein-Coupled Receptor 5 Inhibits Hepatitis B Virus Infection In Vitro and In Vivo. Hepatology 74, 83-98, doi:10.1002/hep.31712 (2021).
30 Zhang, S., Liu, Q., Wang, J. & Harnish, D. C. Suppression of interleukin-6-induced C-reactive protein expression by FXR agonists. Biochem Biophys Res Commun 379, 476-479, doi:10.1016/j.bbrc.2008.12.117 (2009).
31 Guo, C. et al. Bile Acids Control Inflammation and Metabolic Disorder through Inhibition of NLRP3 Inflammasome. Immunity 45, 802-816, doi:10.1016/j.immuni.2016.09.008 (2016).
32 Hao, H. et al. Farnesoid X Receptor Regulation of the NLRP3 Inflammasome Underlies Cholestasis-Associated Sepsis. Cell Metab 25, 856-867 e855, doi:10.1016/j.cmet.2017.03.007 (2017).
33 Schmitz, N., Kurrer, M., Bachmann, M. F. & Kopf, M. Interleukin-1 is responsible for acute lung immunopathology but increases survival of respiratory influenza virus infection. J Virol 79, 6441-6448, doi:10.1128/JVI.79.10.6441-6448.2005 (2005).
34 Dinarello, C. A. A clinical perspective of IL-1beta as the gatekeeper of inflammation. Eur J Immunol 41, 1203-1217, doi:10.1002/eji.201141550 (2011).
35 Brandes, M., Klauschen, F., Kuchen, S. & Germain, R. N. A systems analysis identifies a feedforward inflammatory circuit leading to lethal influenza infection. Cell 154, 197-212, doi:10.1016/j.cell.2013.06.013 (2013).
36 Lee, C. H. et al. Interleukin-1 beta transactivates epidermal growth factor receptor via the CXCL1-CXCR2 axis in oral cancer. Oncotarget 6, 38866-38880, doi:10.18632/oncotarget.5640 (2015).
37 Kulkarni, U. et al. Excessive neutrophil levels in the lung underlie the age-associated increase in influenza mortality. Mucosal Immunol 12, 545-554, doi:10.1038/s41385-018-0115-3 (2019).
38 Wen, C. et al. Heat Stress Alters the Intestinal Microbiota and Metabolomic Profiles in Mice. Front Microbiol 12, 706772, doi:10.3389/fmicb.2021.706772 (2021).
39 Ramirez-Perez, O., Cruz-Ramon, V., Chinchilla-Lopez, P. & Mendez-Sanchez, N. The Role of the Gut Microbiota in Bile Acid Metabolism. Ann Hepatol 16 Suppl 1, S21-S26, doi:10.5604/01.3001.0010.5672 (2017).
40 Ridlon, J. M., Kang, D. J. & Hylemon, P. B. Bile salt biotransformations by human intestinal bacteria. J Lipid Res 47, 241-259, doi:10.1194/jlr.R500013-JLR200 (2006).
41 Abt, M. C. et al. Commensal bacteria calibrate the activation threshold of innate antiviral immunity. Immunity 37, 158-170, doi:10.1016/j.immuni.2012.04.011 (2012).
42 Bradley, K. C. et al. Microbiota-Driven Tonic Interferon Signals in Lung Stromal Cells Protect from Influenza Virus Infection. Cell Rep 28, 245-256 e244, doi:10.1016/j.celrep.2019.05.105 (2019).
43 Hu, M. M. et al. Virus-induced accumulation of intracellular bile acids activates the TGR5-beta-arrestin-SRC axis to enable innate antiviral immunity. Cell Res 29, 193-205, doi:10.1038/s41422-018-0136-1 (2019).
44 Winkler, E. S. et al. The Intestinal Microbiome Restricts Alphavirus Infection and Dissemination through a Bile Acid-Type I IFN Signaling Axis. Cell 182, 901-918 e918, doi:10.1016/j.cell.2020.06.029 (2020).
45 Pols, T. W. TGR5 in inflammation and cardiovascular disease. Biochem Soc Trans 42, 244-249, doi:10.1042/BST20130279 (2014).
46 Yeoh, Y. K. et al. Gut microbiota composition reflects disease severity and dysfunctional immune responses in patients with COVID-19. Gut 70, 698-706, doi:10.1136/gutjnl-2020-323020 (2021).
47 Mizutani, T. et al. Correlation Analysis between Gut Microbiota Alterations and the Cytokine Response in Patients with Coronavirus Disease during Hospitalization. Microbiol Spectr 10, e0168921, doi:10.1128/spectrum.01689-21 (2022).
48 Hadjadj, J. et al. Impaired type I interferon activity and inflammatory responses in severe COVID-19 patients. Science 369, 718-724, doi:10.1126/science.abc6027 (2020).
49 Huang, C. et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395, 497-506, doi:10.1016/S0140-6736(20)30183-5 (2020).
50 Lucas, C. et al. Longitudinal analyses reveal immunological misfiring in severe COVID-19. Nature 584, 463-469, doi:10.1038/s41586-020-2588-y (2020).
51 Ichinohe, T. et al. Microbiota regulates immune defense against respiratory tract influenza A virus infection. Proc Natl Acad Sci U S A 108, 5354-5359, doi:1019378108 (2011).
52 Moriyama, M., Koshiba, T. & Ichinohe, T. Influenza A virus M2 protein triggers mitochondrial DNA-mediated antiviral immune responses. Nat Commun 10, 4624, doi:10.1038/s41467-019-12632-5 (2019).
53 Yoshikawa, T. et al. A highly attenuated vaccinia virus strain LC16m8-based vaccine for severe fever with thrombocytopenia syndrome. PLoS Pathog 17, e1008859, doi:10.1371/journal.ppat.1008859 (2021).
54 Ichinohe, T., Lee, H. K., Ogura, Y., Flavell, R. & Iwasaki, A. Inflammasome recognition of influenza virus is essential for adaptive immune responses. J Exp Med 206, 79-87, doi:jem.20081667 (2009).
55 Soga, T. et al. Quantitative metabolome analysis using capillary electrophoresis mass spectrometry. J Proteome Res 2, 488-494, doi:10.1021/pr034020m (2003).
56 Mishima, E. et al. Evaluation of the impact of gut microbiota on uremic solute accumulation by a CE-TOFMS-based metabolomics approach. Kidney Int 92, 634-645, doi:10.1016/j.kint.2017.02.011 (2017).
57 Sugimoto, M., Wong, D. T., Hirayama, A., Soga, T. & Tomita, M. Capillary electrophoresis mass spectrometry-based saliva metabolomics identified oral, breast and pancreatic cancer-specific profiles. Metabolomics 6, 78-95, doi:10.1007/s11306-009-0178-y (2010).
58 Hagio, M., Matsumoto, M., Fukushima, M., Hara, H. & Ishizuka, S. Improved analysis of bile acids in tissues and intestinal contents of rats using LC/ESI-MS. J Lipid Res 50, 173-180, doi:10.1194/jlr.D800041-JLR200 (2009).
59 Yukawa-Muto, Y. et al. Distinct responsiveness to rifaximin in patients with hepatic encephalopathy depends on functional gut microbial species. Hepatol Commun, doi:10.1002/hep4.1954 (2022).
60 Furusawa, Y. et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 504, 446-450, doi:10.1038/nature12721 (2013).