1.
Moscone EA, Scaldaferro MA, Grabiele M, Cecchini NM, Sánchez García Y, Jarret R, Daviña
JR, Ducasse DA, Barboza GE, Ehrendorfer F. The evolution of chili peppers (Capsicum - Solanaceae): A cytogenetic perspective. Acta Hortic. 2007;745:137-70 Available
from: https://pubag.nal.usda.gov/download/17481/PDF
2.
Olmstead RG, Bohs L, Migid HA, Santiago-Valentin E, Garcia VF, Collier SM. A molecular
phylogeny of the Solanaceae. Taxon. 2008;57:1159-81 Available from:
https://doi.org/10.1002/tax.574010
3.
Qin C, Yu CS, Shen YO, Fang XD, Chen L, Min JM, Cheng JW, Zhao SC, Xu M, Luo Y et al. Whole-genome sequencing of cultivated and wild peppers provides insights into Capsicum domestication and specialization. Proc Natl Acad Sci USA. 2014;111:5135-40 Available
from: https://doi.org/10.1073/pnas.1400975111
4.
Andrews J. Peppers: The domesticated Capsicums. Austin: University of Texas Press. 1984.
6.
Tian HL, Wang FG, Zhao JR, Yi HM, Wang L, Wang R, Yang Y, Song W. Development of maizeSNP3072,
a high-throughput compatible SNP array, for DNA fingerprinting identification of Chinese
maize varieties. Mol Breed.2015;35:136 Available from: https://doi.org/10.1007/s11032-015-0335-0
7.
McCouch SR, Chen XL, Panaud O, Temnykh S, Xu YB, Cho YG, Huang N, Ishii T, Blair M.
Microsatellite marker development, mapping and applications in rice genetics and breeding.
Plant Mol Biol. 1997;35:89-99 Available from: https://doi.org/10.1023/a:1005711431474
8.
Nagaraju J, Kathirvel M, Kumar RR, Siddiq EA, Hasnain SE. Genetic analysis of traditional
and evolved Basmati and non-Basmati rice varieties by using fluorescence-based ISSR-PCR
and SSR markers (vol 99, pg 5836, 2002). Proc Natl Acad Sci USA. 2002;99:13357 Available from: https://doi.org/10.1073/pnas.212463799
9.
Darine T, Allagui MB, Rouaissi M, Boudabbous A. Pathogenicity and RAPD analysis of
Phytophthora nicotianae pathogenic to pepper in Tunisia. Physiol Mol Plan Pathol. 2007;70:142-8 Available
from: https://doi.org/10.1016/j.pmpp.2007.08.002
10.
Lanteri S, Acquadro A, Quagliotti L, Portis E. RAPD and AFLP assessment of genetic
variation in a landrace of pepper (Capsicum annuum L.), grown in North-West Italy. Gen Res Crop Evol. 2003;50:723-35 Available from:
https://doi.org/10.1023/a:1025075118200
11.
Lefebvre V, Palloix A, Rives M. Nuclear RFLP between pepper cultivars (Capsicum annuum L).Euphytica. 1993;71:189-99 Available from: https://10.1007/bf00040408
12.
Tanksley SD, Bernatzky R, Lapitan NL, Prince JP. Conservation of gene repertoire but
not gene order in pepper and tomato. Proc Natl Acad Sci USA. 1988;85:6419-23 Available
from: https://doi.org/10.1073/pnas.85.17.6419
13.
Kim S, Park M, Yeom SI, Kim YM, Lee JM, Lee HA, Seo E, Choi J, Cheong K, Kim KT et al. Genome sequence of the hot pepper provides insights into the evolution of pungency
in Capsicum species. Nat Genet. 2014;46:270-8 Available from: https://doi.org/10.1038/ng.2877
14.
Guo GJ, Zhang GL, Pan BG, Diao WP, Liu JB, Ge W, Gao CZ, Zhang Y, Jiang C, Wang SB.
Development and application of InDel markers for Capsicum spp. based on whole-genome re-sequencing. Sci Rep. 2019;9:3691 Available from: https://doi.org/10.1038/s41598-019-40244-y
15.
Li WP, Cheng JW, Wu ZM, Qin C, Tan S, Tang X, Cui JJ, Zhang L, Hu KL. An InDel-based
linkage map of hot pepper (Capsicum annuum). Mol Breed. 2015;35:32 Available from: https://doi.org/10.1007/s11032-015-0219-3
16.
Tan S, Cheng JW, Zhang L, Qin C, Nong DG, Li WP, Tang X, Wu ZM, Hu KL. Construction
of an interspecific genetic map based on InDel and SSR for mapping the QTLs affecting
the initiation of flower primordia in pepper (Capsicum spp.). Plos One. 2015;10:e0119389 Available from: https://doi.org/10.1371/journal.pone.0119389
17.
Fan JB, Oliphant A, Shen R, Kermani BG, Garcia F, Gunderson KL, Hansen M, Steemers
F, Butler SL, Deloukas P et al. Highly parallel SNP genotyping. Cold Spring Harbor Symposia on Quantitative Biology.
2003;68:69-78 Available from: https://doi.org/10.1101/sqb.2003.68.69
19.
Livak KJ, Flood SJA, Marmaro J, Giusti W, Deetz K. Oligonucleotides with fluorescent
dyes at opposite ends provide a quenched probe system useful for detecting PCR product
and nucleic acid hybridization. Genome Res. 1995;4:357-62 Available from: https://www.ncbi.nlm.nih.gov/pubmed/7580930
20.
Li L, Fang ZW, Zhou JF, Chen H, Hu ZF, Gao LF, Chen LH, Ren S, Ma HY, Lu L, Zhang
WX, Peng H.An accurate and efficient method for large-scale SSR genotyping and applications.
Nucleic Acids Research. 2017;45 Available from: https://doi.org/10.1093/nar/gkx093
21.
Krasileva KV, Vasquez-Gross HA, Howell T, Bailey P, Paraiso F, Clissold L, Simmonds
J, Ramirez-Gonzalez RH, Wang XD, Borrill P, Fosker C, Ayling S, Phillips AL, Uauy C, Dubcovsky J. Uncovering hidden variation
in polyploid wheat. Proc Natl Acad Sci USA. 2017;114:913-21 Available from: https://doi.org/10.1073/pnas.1619268114
22.
Jiang L, Liu X, Yang J, Wang HF, Jiang JC, Liu LL, He S, Ding XD, Liu JF, Zhang Q.
Targeted resequencing of GWAS loci reveals novel genetic variants for milk production
traits. BMC Genomics 2014;15:1105 Available from: https://doi.org/10.1186/1471-2164-15-1105
23.
Guo ZF, Wang HW, Tao JJ, Ren YH, Xu C, Wu KS, Zou C, Zhang JN, Xu YB. Development
of multiple SNP marker panels affordable to breeders through genotyping by target
sequencing (GBTS) in maize. Mol Breed. 2019;39:37 Available from: https://doi.org/10.1007/s11032-019-0940-4
24.
Yang JJ, Zhang J, Han RX, Zhang F., Mao AJ, Luo J, Dong BB, Liu H, Tang H, Zhang JN,
Wen CL. Target SSR-seq: A novel SSR genotyping technology associate with perfect SSRs
in genetic analysis of cucumber varieties. Front Plant Sci. 2019;10:531 Available
from:
https://doi.org/10.3389/fpls.2019.00531
26.
Ibiza VP, Blanca J, Canizares J, Nuez F. Taxonomy and genetic diversity of domesticated
Capsicum species in the Andean region. Gen Res Crop Evol. 2012;59:1077-88 Available from:
https://doi.org/10.1007/s10722-011-9744-z
27.
Yumnam JS, Tyagi W, Pandey A, Meetei NT, Rai M. Evaluation of genetic diversity of
chilli landraces from North Eastern India based on morphology, SSR markers and the
Pun1 locus. Pl Mol Reporter. 2012;30:1470-79 Available from: https://doi.org/10.1007/s11105-012-0466-y
28.
Zhang XF, Sun HH, Xu Y, Chen B, Yu SC, Geng SS, Wang Q. Development of a large number
of SSR and InDel markers and construction of a high-density genetic map based on a
RIL population of pepper (Capsicum annuum L.). Mol Breed. 2016;36:92 Available from: https://doi.org/10.1007/s11105-012-0466-y
30.
Lee JM, Nahm SH, Kim YM, Kim BD. Characterization and molecular genetic mapping of
microsatellite loci in pepper. Theor Appl Genet. 2004;108:619-27 Available from: https://doi.org/10.1007/s00122-003-1467-x
31.
Taranto F, D'Agostino N, Greco B, Cardi T, Tripodi P. Genome-wide SNP discovery and
population structure analysis in pepper (Capsicum annuum) using genotyping by sequencing. BMC Genomics. 2016;
17 Available from: https://doi.org/10.1186/s12864-016-3297-7
32.
Kraft KH, Brown CH, Nabhan GP, Luedeling E, Ruiz JDL, d'Eeckenbrugge GC, Hijmans RJ,
Gepts P. Multiple lines of evidence for the origin of domesticated chili pepper, Capsicum annuum, in Mexico. Proc Natl Acad Sci USA. 2014;111:6165-70 Available from: https://doi.org/10.1073/pnas.1308933111
33.Bosland PW, Votava E. Peppers: vegetable and spice Capsicums. Oxford, Wallingford: Cabi. 2000
35.
Geng SS, Chen B, Zhang XF, Du HS. The trend of market demand and breeding strategies
of pepper varieties in China. China Vegetables. 2015;3:1-5 (In Chinese) Available
from: http://www.cnveg.org/UserFiles/File/3-1.pdf
36.
Moreira AFP, Ruas PM, Ruas CD, Baba VY, Giordani W, Arruda IM, Rodrigues R, Goncalves
LSA. Genetic diversity, population structure and genetic parameters of fruit traits
in Capsicum chinense. Sci Hortic. 2018;236:1-9 Available from: https://doi.org/10.1016/j.scienta.2018.03.012
37.
Ou LJ, Li D, Lv JH, Chen WC, Zhang ZQ, Li XF, Yang BZ, Zhou SD, Yang S, Li WG et al. Pan-genome of cultivated pepper (Capsicum) and its use in gene presence-absence variation analyses. New Phytol. 2018;220:360-63
Available from: https://doi.org/10.1111/nph.15413
38.
Moses M, Umaharan P, Dayanandan S. Microsatellite based analysis of the genetic structure
and diversity of Capsicum chinense in the Neotropics. Gen Res Crop Evol. 2014;61:741-55 Available from: https://doi.org/10.1007/s10722-013-0069-y
39.
Baral JB, Bosland PW. Unraveling the species dilemma in Capsicum frutescens and C. chinense (Solanaceae): A multiple evidence approach using morphology, molecular analysis,
and sexual compatibility. J Amer Soc Hort Sci. 2004;129:826-32 Available from: https://doi.org/10.21273/JASHS.129.6.0826
40.
Gonzalez-Perez S, Garces-Claver A, Mallor C, de Miera LES, Fayos O, Pomar F, Merino
F, Silvar C. New insights into Capsicum spp relatedness and the diversification process of Capsicum annuum in Spain. PLoS One. 2014;9:e116276 Available from: https://doi.org/10.1371/journal.pone.0116276
41.
Hill TA, Ashrafi H, Reyes-Chin-Wo S, Yao JQ, Stoffel K, Truco MJ, Kozik A, Michelmore
RW, Van Deynze A. Characterization of Capsicum annuum genetic diversity and population structure based on parallel polymorphism discovery
with a 30K unigene Pepper GeneChip. Plos One. 2013;8:e56200 Available from: https://doi.org/10.1371/journal.pone.0056200
42.
Nicolai M, Cantet M, Lefebvre V, Sage-Palloix AM, Palloix A. Genotyping a large collection
of pepper (Capsicum spp.) with SSR loci brings new evidence for the wild origin of cultivated C. annuum and the structuring of genetic diversity by human selection of cultivar types. Gen
Res Crop Evol.2013;60:2375-90 Available from: https://doi.org/10.1007/s10722-013-0006-0
43.
Tam SM, Lefebvre V, Palloix A, Sage-Palloix AM, Mhiri C, Grandbastien MA. LTR-retrotransposons
Tnt1 and T135 markers reveal genetic diversity and evolutionary relationships of domesticated
peppers. Theor Appl Genet. 2009;119:973-89 Available from: https://doi.org/10.1007/s00122-009-1102-6
44.
Chaim AB, Borovsky Y, De Jong W, Paran I. Linkage of the A locus for the presence
of anthocyanin and fs10.1, a major fruit-shape QTL in pepper. Theor Appl Genet. 2003;106:889-94 Available from:
https://doi.org/10.1007/s00122-002-1132-9
45.
Chunthawodtiporn J, Hill T, Stoffel K, Van Deynze A. Quantitative trait loci controlling
fruit size and other horticultural traits in bell pepper (Capsicum annuum). Plant Genome. 2018;11:160125 Available from: https://doi.org/10.3835/plantgenome2016.12.0125
46.
van der Knaap E, Chakrabarti M, Chu YH, Clevenger JP, Illa-Berenguer E, Huang ZJ,
Keyhaninejad N, Mu Q, Sun L, Wang YP,Wu S. What lies beyond the eye: the molecular mechanisms regulating tomato fruit weight
and shape. Front Plant Sci. 2014;5:227 Available from: https://doi.org/10.3389/fpls.2014.00227
47.
Wu S, Zhang BY, Keyhaninejad N, Rodriguez GR, Kim HJ, Chakrabarti M, Illa-Berenguer
E, Taitano NK, Gonzalo MJ, Diaz A, Pan YP, Leisner CP, Halterman D, Buell CR, Weng
YQ, Jansky SH, van Eck H, Willemsen J, Monforte AJ, Meulia T, van der Knaap E. A common
genetic mechanism underlies morphological diversity in fruits and other plant organs.
Nat Commun. 2018;9:4734 Available from: https://doi.org/10.1038/s41467-018-07216-8
48.
Yang HB, Liu WY, Kang WH, Kim JH, Cho HJ, Yoo JH, Kang BC. Development and validation
of L allele-specific markers in Capsicum. Mol Breed. 2012;30:819-29 Available from: https://doi.org/10.1007/s11032-011-9666-7
49.
Rehrig WZ, Ashrafi H, Hill T, Prince J, Van Deynze A. CaDMR1 Cosegregates with QTL Pc5.1 for resistance to Phytophthora capsici in pepper (Capsicum annuum). Plant Genome. 2014;7:1-12 Available from: https://doi.org/10.3835/plantgenome2014.03.0011
50.
Romer P, Hahn S, Jordan T, Strauss T, Bonas U, Lahaye T. Plant pathogen recognition
mediated by promoter activation of the pepper Bs3 resistance gene. Science. 2007;318:645-48 Available from: https://doi.org/10.1126/science.1144958
51.
Yeam I, Kang BC, Lindeman W, Frantz JD, Faber N, Jahn MM. Allele-specific CAPS markers
based on point mutations in resistance alleles at the pvr1 locus encoding eIF4E in Capsicum. Theor Appl Genet. 2005;112:178-86 Available from: https://doi.org/10.1007/s00122-005-0120-2
52.
Fulton TM, Chunwongse J, Tanksley SD. Microprep protocol for extraction of DNA from tomato and other herbaceous plants. Plant Mol Biol Reporter. 1995;13:207-9 Available from: https://doi.org/10.1007/bf02670897
54.
McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K,
Altshuler D, Gabriel S, Daly M, DePristo MA. The Genome Analysis Toolkit: A mapreduce
framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20:1297-303
Available from: https://doi.org/10.1101/gr.107524.110
57.
Botstein D, White RL, Skolnick M, Davis RW. Construction of a genetic linkage map
in man using restriction fragment length polymorphisms. Am J Hum Genet.1980;32:314-31 Available from: https://www.ncbi.nlm.nih.gov/pubmed/6247908
58.
Husson F, Josse J, Pages J. Principal component methods-hierarchical clustering-partitional
clustering: why would we need to choose for visualizing data? Technical report-Agrocampus,
Applied Mathematics Department. 2010 Available from: http://www.agrocampus-ouest.fr/math/
59.
Falush D, Stephens M, Pritchard JK. Inference of population structure using multilocus
genotype data: linked loci and correlated allele frequencies. Genetics. 2003;164:1567-87
Available from: https://www.ncbi.nlm.nih.gov/pubmed/12930761
61.
Kamvar ZN, Tabima JF, Grünwald NJ. Poppr: an R package for genetic analysis of populations
with clonal, partially clonal, and/or sexual reproduction. Peerj. 2014;2:e281 Available
from: https://doi.org/10.7717/peerj.281
62.
Su TB, Li PR, Yang JJ, Sui GL, Yu YJ, Zhang DS, Zhao XY, Wang WH, Wen CL, Yu SC, Zhang
FL.Development of cost-effective single nucleotide polymorphism marker assays for genetic
diversity analysis in Brassica rapa. Mol Breed. 2018;38:42 Available from: https://doi.org/10.1007/s11032-018-0795-0
63.
Pace J, Gardner C, Romay C, Ganapathysubramanian B, Lubberstedt T. Genome-wide association
analysis of seedling root development in maize (Zea mays L.). BMC Genomics. 2015;16:47 Available from: https://doi.org/10.1186/s12864-015-1226-9
64.
Sim SC, Robbins MD, Wijeratne S, Wang H, Yang WC, Francis DM. Association analysis
for bacterial spot resistance in a directionally selected complex breeding population
of tomato. Phytopathology. 2015;105:1437-45 Available from: https://doi.org/10.1094/phyto-02-15-0051-r