While perovskite photovoltaic (PV) devices are on the verge of their commercialization, promising methods to recycle or remanufacture fully-encapsulated perovskite solar cells (PSCs) and modules are still missing. Through detailed life-cycle assessment shown in this work, we identify that the majority of the greenhouse gas emissions can be reduced by re-using the glass substrate and parts of the PV cells. Based on these analytical findings, we develop a novel thermally-assisted mechanochemical approach to remove the encapsulants, the electrode and the perovskite absorber, allowing to re-use most of the device constituents for remanufacturing PSCs, which recovered nearly 90% of their initial performance. This remanufacturing strategy allows to save up to 33% of the module’s global warming potential. Finally, we demonstrate that the CO2-footprint of these remanufactured devices can become less than 30g/kWh, which is the value for state-of-the-art c-Si PV modules and can even reach 15g/kWh assuming a similar lifetime