[1] Shi, X., Yang, X., Wang, S., Wang, S., Zhang, Q., Wang, Y.: Photocatalytic degradation of rhodamine B dye with MWCNT/TiO 2/C 60 composites by a hydrothermal method. J. Wuhan Uni. Technol. Mater. Sci. Ed. 26(1), 65-69. (2011).
[2] Barreca, F., Acacia, N., Barletta, E., Spadaro, D., Curro, G., Neri, F.: Titanium oxide nanoparticles prepared by laser ablation in water. Radiat. Eff. Def. Solids: Incorp. Plasma Sci. Plasma Technol., 165(6-10), 573-578 (2010).
[3] MalekshahiByranvand, M., NematiKharat, A., Fatholahi, L., MalekshahiBeiranvand, Z.: A review on synthesis of nano-TiO2 via different methods. J.nanostruct., 3(1), 1-9. (2013).
[4] Bahrami, A., Delshadi, R., Assadpour, E., Jafari, S. M., & Williams, L. (2020). Antimicrobial-loaded nanocarriers for food packaging applications. Advances in Colloid and Interface Science, 102140.
[5] Yousefi, M., Ehsani, A., & Jafari, S. M. (2019). Lipid-based nano delivery of antimicrobials to control food-borne bacteria. Advances in colloid and interface science, 270, 263-277.
[6] Khashan, K. S., Sulaiman, G. M., Hussain, S. A., Marzoog, T. R., & Jabir, M. S. (2020). Synthesis, Characterization and Evaluation of Anti-bacterial, Anti-parasitic and Anti-cancer Activities of Aluminum-Doped Zinc Oxide Nanoparticles. Journal of Inorganic and Organometallic Polymers and Materials, 1-17.
[7] Khashan, K. S., Sulaiman, G. M., Abdul Ameer, F. A. K., & Napolitano, G. (2016). Synthesis, characterization and antibacterial activity of colloidal NiO nanoparticles. Pakistan journal of pharmaceutical sciences, 29(2).
[8] Sulaiman, G. M., Tawfeeq, A. T., & Jaaffer, M. D. (2018). Biogenic synthesis of copper oxide nanoparticles using olea europaea leaf extract and evaluation of their toxicity activities: An in vivo and in vitro study. Biotechnology progress, 34(1), 218-230.
[9] Khashan, K. S., Sulaiman, G. M., Hussain, S. A., Marzoog, T. R., & Jabir, M. S. (2020). Synthesis, Characterization and Evaluation of Anti-bacterial, Anti-parasitic and Anti-cancer Activities of Aluminum-Doped Zinc Oxide Nanoparticles. Journal of Inorganic and Organometallic Polymers and Materials, 1-17.
[10] Ismail, R. A., Sulaiman, G. M., Abdulrahman, S. A., & Marzoog, T. R. (2015). Antibacterial activity of magnetic iron oxide nanoparticles synthesized by laser ablation in liquid. Materials Science and Engineering: C, 53, 286-297.
[11] Russo, P., Liang, R., He, R. X., Zhou, Y. N.: Phase transformation of TiO2 nanoparticles by femtosecond laser ablation in aqueous solutions and deposition on conductive substrates. Nanoscale, 9(18), 6167-6177. (2017)
[12] Song, Y., Yang, Y., Medforth, C.J., Pereira, E., Singh, A.K., Xu, H., Jiang, Y., Brinker, C.J., van Swol, F. Shelnutt, J.A.: Controlled synthesis of 2-D and 3-D dendritic platinum nanostructures. J. American Chem. Soc., 126(2), 635-645. (2004)
[13] Singh, A., Vihinen, J., Frankberg, E., Hyvarinen, L., Honkanen, M., Levanen, E.: Pulsed laser ablation-induced green synthesis of TiO2 nanoparticles and application of novel small angle X-ray scattering technique for nanoparticle size and size distribution analysis. Nanoscale Res. Lett., 11(1), 1-9. (2016)
[14] Colon, G., Hidalgo, M. C., Navio, J. A.: A novel preparation of high surface area TiO2 nanoparticles from alkoxide precursor and using active carbon as additive. Catalysis today, 76(2-4), 91-101. (2002)
[15] Shakhatov, V. A., Gordeev, O. A.: Thin film deposition by means of laser ablation of titanium oxide targets in oxygen radiofrequency electrode plasma. High Energy Chem., 42(2), 141-144. (2008)
[16] Solati, E., Aghazadeh, Z., Dorranian, D.: Effects of liquid ablation environment on the characteristics of TiO2 Nanoparticles. J ClustSci , 31(5), 961-969 (202
[17] Nath, A., Laha, S. S., Khare, A.: Synthesis of TiO2 nanoparticles via laser ablation at titanium-water interface. Integ. Ferro., 121(1), 58-64. (2010)
[18] Attan, N., Nur, H., Efendi, J., Lintang, H. O., Lee, S. L., Sumpono, I.: Well-aligned titanium dioxide with very high length-to-diameter ratio synthesized under magnetic field. Chem. Lett., 41(11), 1468-1470. (2012)
[19] Raid A.Ismail ,Ghassan M.Sulaiman, Safa A.Abdulrahman .: Antibacterial activity of magnetic iron oxide nanoparticles synthesized by laser ablation in liquid., 53, 286-297. (2015)
[20] Kareem H. Jawad, Buthenia A. Hasoon, Nehia N. Hussein., Biological application of titanium dioxide nanoparticles prepared through laser ablation in liquid., Drug Invention Today , 12, 10 . (2019)
[21] Giorgetti, E., Miranda, M. M., Caporali, S., Canton, P., Marsili, P., Vergari, C., Giammanco, F.: TiO2 nanoparticles obtained by laser ablation in water: influence of pulse energy and duration on the crystalline phase. J. Alloy. Compd., 643, S75-S79. (2015).
[20] Meagher E P, Lager G A.:Polyhedral thermal expansion in the TiO2 polymorphs: refinement of the crystal structures of rutile and brookite at high temperature, The Canadian Mineralogist, 17, 77-85. (1979)
[21] H. Seki, N. Ishizawa, N. Mizutani and M. Kato: High temperature structures of the rutile-type oxides, TiO2 and SnO2. Yogyo Kyokai Shi. J. Ceramic Assoc. of Japan 92, 219 (1984).
[22] Ma, C., Tschauner, O., Beckett, J. R., Rossman, G. R., Liu, W.: Panguite (Ti4+, Sc, Al, Mg, Zr, Ca)1.8 O3, a new ultra-refractory titania mineral from the Allende meteorite: Synchrotron micro-diffraction and EBSD. American Mineralogist, 97(7), 1219-1225. (2012)
[23] Fusi, M., Russo, V., Casari, C. S., Bassi, A. L., Bottani, C. E.: Titanium oxide nanostructured films by reactive pulsed laser deposition. Appl. Surf. Sci., 255(10), 5334-5337. (2009).
[24] Ismail, R. A., Mousa, A. M., Khashan, K. S., Mohsin, M. H., & Hamid, M. K. Synthesis of PbI2 nanoparticles by laser ablation in methanol. Journal of Materials Science: Materials in Electronics, 27(10), 10696-10700. (2016).
[25] Zhang, J., Zhou, P., Liu,P., Yu,J.: New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO2Phys. Chem. Chem. Phys., 16, 20382-20386 (2014)
[26] Ismail, R. A., Abdulrazaq, O. A., Yahya, K. Z. Preparation and characterization of In2O3 thin films for optoelectronic applications. Surf. Rev. Lett., 12(04), 515-518. (2005).
[27] Ismail, R. A., Sulaiman, G. M., Abdulrahman, S. A. Preparation of iron oxide nanoparticles by laser ablation in DMF under effect of external magnetic field. Internat.J. of Modern Phys. B, 30(17), 1650094. (2016)
[28] Ismail, R. A., Almashhadani, N. J., Sadik, R. H.: Preparation and properties of polystyrene incorporated with gold and silver nanoparticles for optoelectronic applications. Appl. Nanosci., 7(3-4), 109-116. (2017)
[29] E. Salim et al., Effect of light induced heat treatment on the structural and morphological properties of LiNbO3 thin films, Superlattices and Microstructures 128, 67–75. (2019)
[30] Ismail, R. A., Khashan, K. S., Mahdi, R. O. Characterization of high photosensitivity nanostructured 4H-SiC/p-Si heterostructure prepared by laser ablation of silicon in ethanol. Mater. Sci. Semiconduct. Process., 68, 252-261. (2017)
[31] Wypych, A., Bobowska, I., Tracz, M., Opasinska, A., Kadlubowski, S., Krzywania-Kaliszewska, A., Grobelny, J. Wojciechowski, P., Dielectric properties and characterization of titanium dioxide obtained by different chemistry methods. J. Nanomater., 124814. (2014).
[32] Wang, L., Hu, C., & Shao, L.: The antimicrobial activity of nanoparticles: present situation and prospects for the future. International journal of nanomedicine, 12, 1227–1249. (2017).
[33] Jiang, J., Pi, J., & Cai, J. ,:The advancing of zinc oxide nanoparticles for biomedical applications. Bioinorganic chemistry and applications,: national library of medicine. 1062562. (2018).
[34] Al Rugaie, O., Jabir, M., Kadhim, R., Karsh, E., Sulaiman, G. M., Mohammed, S. A., ... & Mohammed, H. A. ,:Gold Nanoparticles and Graphene Oxide Flakes Synergistic Partaking in Cytosolic Bactericidal Augmentation: Role of ROS and NOX2 Activity. Microorganisms, 9(1), 101. (2021).