1. Braakman R, Smith E. The compositional and evolutionary logic of metabolism. Physical biology 2013, 10(1).
2. Sousa FL, Hordijk W, Steel M, Martin WF. Autocatalytic sets in E. coli metabolism. Journal of Systems Chemistry 2015, 6(1): 1-21.
3. Marakushev SA, Belonogova OV. Chemical Basis of Carbon Fixation Autotrophic Paleometabolism. Biology Bulletin 2021, 48(5): 519-529.
4. Butlerow A. Bildung einer zuckerartigen Substanz durch Synthese. Annalen der Chemie und Pharmacie 1861, 120(3): 295-298.
5. Breslow R. On the mechanism of the formose reaction. Tetrahedron Letters 1959, 1(21): 22-26.
6. Delidovich IV, Simonov AN, Taran OP, Parmon VN. Catalytic formation of monosaccharides: from the formose reaction towards selective synthesis. ChemSusChem 2014, 7(7): 1833-1846.
7. Socha RF, Weiss AH, Sakharov MM. Autocatalysis in the formose reaction. Reaction Kinetics and Catalysis Letters 1980, 14(2): 119-128.
8. Heim LE, Konnerth H, Prechtl MHG. Future perspectives for formaldehyde: pathways for reductive synthesis and energy storage. Green Chemistry 2016, 19: 2347-2355.
9. Rauch M, Strater Z, Parkin G. Selective Conversion of Carbon Dioxide to Formaldehyde via a Bis(silyl)acetal: Incorporation of Isotopically Labeled C1 Moieties Derived from Carbon Dioxide into Organic Molecules. Journal of the American Chemical Society 2019, 141(44): 17754-17762.
10. García Martínez JB, Alvarado KA, Christodoulou X, Denkenberger DC. Chemical synthesis of food from CO2 for space missions and food resilience. Journal of CO2 Utilization 2021, 53.
11. Dinger F, Platt U. Towards an Artificial Carbohydrates Supply on Earth. Frontiers in Sustainable Food Systems 2020, 4.
12. Robinson WE, Daines E, van Duppen P, de Jong T, Huck WTS. Environmental conditions drive self-organization of reaction pathways in a prebiotic reaction network. Nature Chemistry 2022, 14(6): 623-631.
13. Davidson D, Bogert MT. The Preparation of Aromatic Alcohols by the Crossed Cannizzaro Reaction with Formaldehyde. Journal of the American Chemical Society 1935, 57(5): 905.
14. Simonov AN, Pestunova OP, Matvienko LG, Parmon VN. 13C NMR studies of isomerization of D-glucose in an aqueous solution of Ca(OH)2. The effect of molecular oxygen. Russian Chemical Bulletin 2005, 54(8): 1967-1972.
15. Kopetzki D, Antonietti M. Hydrothermal formose reaction. New Journal of Chemistry 2011, 35(9).
16. Gabel NW, Ponnamperuma C. Model for origin of monosaccharides. Nature 1967, 216(5114): 453-455.
17. Civis S, Szabla R, Szyja BM, Smykowski D, Ivanek O, Knizek A, et al. TiO2-catalyzed synthesis of sugars from formaldehyde in extraterrestrial impacts on the early Earth. Sci Rep 2016, 6: 23199.
18. Gumerova NI, Rompel A. Polyoxometalates in solution: speciation under spotlight. Chem Soc Rev 2020, 49(21): 7568-7601.
19. Kimura T, Kamata K, Mizuno N. A bifunctional tungstate catalyst for chemical fixation of CO2 at atmospheric pressure. Angew Chem Int Ed Engl 2012, 51(27): 6700-6703.
20. Kimura T, Sunaba H, Kamata K, Mizuno N. Efficient [WO4](2-)-catalyzed chemical fixation of carbon dioxide with 2-aminobenzonitriles to quinazoline-2,4(1H,3H)-diones. Inorg Chem 2012, 51(23): 13001-13008.
21. Kamata K, Kimura T, Sunaba H, Mizuno N. Scope of chemical fixation of carbon dioxide catalyzed by a bifunctional monomeric tungstate. Catalysis Today 2014, 226: 160-166.
22. Sugahara K, Kimura T, Kamata K, Yamaguchi K, Mizuno N. A highly negatively charged γ-Keggin germanodecatungstate efficient for Knoevenagel condensation. Chemical Communications 2012, 48: 8422-8424.
23. Sugahara K, Satake N, Kamata K, Nakajima T, Mizuno N. A basic germanodecatungstate with a -7 charge: efficient chemoselective acylation of primary alcohols. Angew Chem Int Ed Engl 2014, 53(48): 13248-13252.
24. Hayashi S, Yamazoe S, Koyasu K, Tsukuda T. Application of group V polyoxometalate as an efficient base catalyst: a case study of decaniobate clusters. RSC Advances 2016, 6(20): 16239-16242.
25. Nakata K, Ozaki T, Terashima C, Fujishima A, Einaga Y. High-yield electrochemical production of formaldehyde from CO2 and seawater. Angew Chem Int Ed Engl 2014, 53(3): 871-874.
26. Birdja YY, Koper MT. The Importance of Cannizzaro-Type Reactions during Electrocatalytic Reduction of Carbon Dioxide. J Am Chem Soc 2017, 139(5): 2030-2034.
27. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. Colorimetric Method for Determination of Sugars and Related Substances. Anal Chem 1956, 28(3): 350-356.
28. Frisch M J. gaussian 09. 2009.
29. Becke AD. Density‐functional thermochemistry. III. The role of exact exchange. The Journal of Chemical Physics 1993, 98(7): 5648-5652.
30. Becke AD. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A Gen Phys 1988, 38(6): 3098-3100.
31. Lee C, Yang W, Parr RG. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B Condens Matter 1988, 37(2): 785-789.
32. Vosko SH, Wilk L, Nusair M. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Canadian Journal of Physics 1980, 58(8): 1200-1211.
33. Hehre WJ, Ditchfield R, Pople JA. Self—Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian—Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules. The Journal of Chemical Physics 1972, 56(5): 2257-2261.
34. Hariharan PC, Pople JA. The influence of polarization functions on molecular orbital hydrogenation energies. Theoretica Chimica Acta 1973, 28(3): 213-222.
35. Francl MM, Pietro WJ, Hehre WJ, Binkley JS, Gordon MS, DeFrees DJ, et al. Self‐consistent molecular orbital methods. XXIII. A polarization‐type basis set for second‐row elements. The Journal of Chemical Physics 1982, 77(7): 3654-3665.
36. Frisch MJ, Pople JA, Binkley JS. Self‐consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets. The Journal of Chemical Physics 1984, 80(7): 3265-3269.
37. Clark T, Chandrasekhar J, Spitznagel GW, Schleyer PV. Efficient Diffuse Function-Augmented Basis Sets for Anion Calculations. Iii. The 3-21+G Basis Set for First-Row Elements, Li-F. J Comput Chem 1983, 4(3): 294-301.
38. Hay PJ, Wadt WR. Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. The Journal of Chemical Physics 1985, 82(1): 299-310.
39. Hay PJ, Wadt WR. Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. The Journal of Chemical Physics 1985, 82(1): 270-283.
40. Wadt WR, Hay PJ. Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi. The Journal of Chemical Physics 1985, 82(1): 284-298.
41. Fukui K. The Path of Chemical-Reactions - the Irc Approach. Accounts of Chemical Research 1981, 14(12): 363-368.
42. Hratchian HP, Schlegel HB. Using Hessian updating to increase the efficiency of a Hessian based predictor-corrector reaction path following method. Journal of Chemical Theory and Computation 2005, 1(1): 61-69.
43. Grimme S, Antony J, Ehrlich S, Krieg H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 2010, 132(15): 154104.
44. Tomasi J, Mennucci B, Cammi R. Quantum mechanical continuum solvation models. Chem Rev 2005, 105(8): 2999-3093.
45. Reed AE, Curtiss LA, Weinhold F. Intermolecular Interactions from a Natural Bond Orbital, Donor-Acceptor Viewpoint. Chemical Reviews 1988, 88(6): 899-926.
46. Aviles-Moreno J-R, Huet TR. Sugars in the gas phase: The conformational properties of erythrose, threose, and erythrulose characterized by quantum chemistry calculations. Journal of Molecular Structure: THEOCHEM 2008, 858(1-3): 113-119.
47. Kato S, Takashino M, Igarashi K, Kitagawa W. Isolation and Genomic Characterization of a Proteobacterial Methanotroph Requiring Lanthanides. Microbes Environ 2020, 35(1).
48. Quaiyum S, Igarashi K, Narihiro T, Kato S. Microbial Community Analysis of Anaerobic Enrichment Cultures Supplemented with Bacterial Peptidoglycan as the Sole Substrate. Microbes Environ 2020, 35(3).