[1] Bender C. M. & Boettcher S. Real spectra in non-Hermitian Hamiltonians having PT symmetry. *Phys. Rev. Lett.* **80**, 5243–5246 (1998).

[2] Bender C. M., Boettcher S. & Meisinger P. N. PT-symmetric quantum mechanics. *J. Math. Phys.* **40**, 2201–2229 (1999).

[3] Bender C. M., Brody D. C. & Jones H. F. Complex extension of quantum mechanics. *Phys. Rev. Lett.* **89**, 270401 (2002).

[4] Rotter I. A non-Hermitian Hamilton operator and the physics of open quantum systems. *J. Phys. A* **42**, 153001 (2009).

[5] Shen H. & Fu L. Quantum Oscillation from In-Gap States and Non-Hermitian Landau Level Problem. *Phys. Rev. Lett.* **121**, 026403 (2018).

[6] Makris K. G., El-Ganainy R., Christodoulides D. N. & Musslimani Z. H. Beam Dynamics in PT Symmetric Optical Lattices. *Phys. Rev. Lett. ***100**, 103904 (2008).

[7] Klaiman S., Günther U. & Moiseyev N. Visualization of Branch Points in PT-Symmetric Waveguides. *Phys. Rev. Lett.* **101**, 080402 (2008).

[8] Longhi S. Bloch Oscillations in Complex Crystals with PT Symmetry. *Phys. Rev. Lett.* **103****,** 123601 (2009).

[9] Regensburger A., Bersch C., Miri M.-A., Onishchukov G., Christodoulides D. N. & Peschel U. Parity-time synthetic photonic lattices. *Nature* **488**, 167 (2012).

[10] Malzard S., Poli C. & Schomerus H. Topologically Protected Defect States in Open Photonic Systems with Non-Hermitian Charge-Conjugation and Parity-Time Symmetry. *Phys. Rev. Lett.* **115**, 200402 (2015).

[11] Zhen B. *et al.* Spawning rings of exceptional points out of Dirac cones. *Nature* **525**, 354 (2015).

[12] Ding K., Ma G., Zhang Z. Q. & Chan C. T. Experimental Demonstration of an Anisotropic Exceptional Point. *Phys. Rev. Lett.* **121**, 085702 (2018).

[13] Tang W., Jiang X., Ding K., Xiao Y.-X., Zhang Z. Q., Chan C. T. & Ma G. Exceptional nexus with a hybrid topological invariant. *Science* **370**, 6520 (2020).

[14] Feng L. *et al.* Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies. *Nat. Mater.* **12**, 108–113 (2013).

[15] Zhou H. *et al.* Observation of bulk Fermi arc and polarization half charge from paired exceptional points. *Science* **359**, 1009-1012 (2018).

[16] Zeuner J. M., Rechtsman M. C., Plotnik Y., Lumer Y., Nolte S., Rudner M. S., Segev M. & Szameit A. Observation of a Topological Transition in the Bulk of a Non-Hermitian System. *Phys. Rev. Lett.* **115**, 040402 (2015).

[17] Xiao L. *et al.* Observation of topological edge states in parity–time-symmetric quantum walks. *Nat. Phys.* **13**, 1117 (2017).

[18] Weimann S. *et al.* Topologically protected bound states in photonic parity–time-symmetric crystals. *Nat. Mater.* **16**, 433 (2017).

[19] Zhao H., Qiao X., Wu T., Midya B., Longhi S. & Feng L. Non-Hermitian Topological Light Steering. *Science* **365**, 1163-1166 (2019).

[20] Yao S. & Wang Z. Edge States and Topological Invariants of Non-Hermitian Systems. *Phys. Rev. Lett.* **121**, 086803 (2018).

[21] Yao S., Song F. & Wang Z. Non-Hermitian Chern Bands. *Phys. Rev. Lett.* **121**, 136802 (2018).

[22] Song F., Yao S. & Wang Z. Non-Hermitian Skin Effect and Chiral Damping in Open Quantum Systems. *Phys. Rev. Lett.* **123**, 170401 (2019).

[23] Song F., Yao S. & Wang Z. Non-Hermitian Topological Invariants in Real Space. *Phys. Rev. Lett. ***123**, 246801 (2019).

[24] Yang Z., Zhang K., Fang C. & Hu J. Non-Hermitian Bulk-Boundary Correspondence and Auxiliary Generalized Brillouin Zone Theory. *Phys. Rev. Lett.* **125**, 226402 (2020).

[25] Zhang K., Yang Z. & Fang C. Correspondence between Winding Numbers and Skin Modes in Non-Hermitian Systems. *Phys. Rev. Lett.* **125**, 126402 (2020).

[26] Zhu X. *et al.* Photonic non-Hermitian skin effect and non-Bloch bulk-boundary correspondence. *Phys. Rev. Research* **2**, 013280 (2020).

[27] Xiao L., Deng T., Wang K., Zhu G., Wang Z., Yi W. & Xue P. Non-Hermitian bulk–boundary correspondence in quantum dynamics. *Nat. Phys.* **16**, 761-766 (2020).

[28] Weidemann S. *et al.* Topological funneling of light. *Science* **368**, 311-314 (2020).

[29] Li L., Lee C. H. & Gong J. Topological Switch for Non-Hermitian Skin Effect in Cold-Atom Systems with Loss. *Phys. Rev. Lett.* **124**, 250402 (2020).

[30] Kawabata K., Sato M. & Shiozaki K. Higher-order non-Hermitian skin effect. *Phys. Rev. B* **102**, 205118 (2020).

[31] Benalcazar, W. A., Bernevig, B. A. & Hughes, T. L. Quantized electric multipole insulators. *Science* **357**, 61-66 (2017).

[32] Serra-Garcia, M. *et al.* Observation of a phononic quadrupole topological insulator. *Nature* **555**, 342-345 (2018).

[33] Peterson, C. W., Benalcazar, W. A., Hughes, T. L. & Bahl, G. A quantized mircowave quadrupole insulator with topological protected corner states. *Nature* **555**, 346-350 (2018).

[34] Imhof, S. *et al. *Topolectrical circuit realization of topological corner modes. *Nat. Phys.* **14**, 925-929 (2018).

[35] Noh, J. *et al.* Topological protection of photonic mid-gap defect modes. *Nat. Photon.* **12**, 408-415 (2018).

[36] Schindler, F. *et al.* Higher-order topology in bismuth. *Nat. Phys.* **14**, 918-924 (2018).

[37] Ezawa M. Higher-Order Topological Insulators and Semimetals on the Breathing Kagome and Pyrochlore Lattices. *Phys. Rev. Lett.* **120**, 026801 (2018).

[38] Xue H., Yang Y., Gao F., Chong Y. & Zhang B. Acoustic higher-order topological insulator on a kagome lattice. *Nat. Mater. ***18**, 108 (2019).

[39] Ni X., Weiner M., Alù A. & Khanikaev A. B. Observation of higher-order topological acoustic states protected by generalized chiral symmetry. *Nat. Mater. ***18**, 113 (2019).

[40] Zhang X., Wang H.-X., Lin Z.-K., Tian Y., Xie B.-Y., Lu M.-H., Chen Y.-F. & Jiang J.-H. Second-order topology and multidimensional topological transitions in sonic crystals. *Nat. Phys.* **15**, 582 (2019).

[41] Mittal S., Vikram Orre V., Zhu G., Gorlach M. A., Poddubny A. & Hafezi M. Photonic quadrupole topological phases. *Nat. Photo.* **13**, 692 (2019).

[42] Xie B.-Y., Su G.-X., Wang H.-F., Su H., Shen X.-P., Zhan P., Lu M.-H., Wang Z.-L. & Chen Y.-F. Visualization of Higher-Order Topological Insulating Phases in Two-Dimensional Dielectric Photonic Crystals. *Phys. Rev. Lett.* **122**, 233903 (2019).

[43] Zhang X., Xie B.-Y., Wang H.-F., Xu X., Tian Y., Jiang J.-H., Lu M.-H. & Chen Y.-F. Dimensional hierarchy of higher-order topology in three-dimensional sonic crystals. *Nat. Commun.* **10** (2019).

[44] Zhang X., Lin Z.-K., Wang H.-X., Xiong Z., Tian Y., Lu M.-H., Chen Y.-F. & Jiang J.-H. Symmetry-protected hierarchy of anomalous multipole topological band gaps in nonsymmorphic metacrystals. *Nat. Commun.* **11**, 65 (2020).

[45] Li M., Zhirihin D., Gorlach M., Ni X., Filonov D., Slobozhanyuk A., Alù A. & Khanikaev A. B. Higher-order topological states in photonic kagome crystals with long-range interactions. *Nat. Photon. ***14**, 89 (2020).

[46] Xie B.-Y. *et al.* Higher-order quantum spin Hall effect in a photonic crystal. *Nat. Commun.* **11**, 3768 (2020).

[47] Liu Y., Leung S., Li F.-F., Lin Z.-K., Tao X., Poo Y. & Jiang J.-H. Bulk–disclination correspondence in topological crystalline insulators. *Nature* **589**, 381-385 (2021).

[48] Peng Y.-G. *et al.* Experimental demonstration of anomalous Floquet topological insulator for sound. *Nat. Commun.* **7**, 13368 (2016).