[1] Bender C. M. & Boettcher S. Real spectra in non-Hermitian Hamiltonians having PT symmetry. Phys. Rev. Lett. 80, 5243–5246 (1998).
[2] Bender C. M., Boettcher S. & Meisinger P. N. PT-symmetric quantum mechanics. J. Math. Phys. 40, 2201–2229 (1999).
[3] Bender C. M., Brody D. C. & Jones H. F. Complex extension of quantum mechanics. Phys. Rev. Lett. 89, 270401 (2002).
[4] Rotter I. A non-Hermitian Hamilton operator and the physics of open quantum systems. J. Phys. A 42, 153001 (2009).
[5] Shen H. & Fu L. Quantum Oscillation from In-Gap States and Non-Hermitian Landau Level Problem. Phys. Rev. Lett. 121, 026403 (2018).
[6] Makris K. G., El-Ganainy R., Christodoulides D. N. & Musslimani Z. H. Beam Dynamics in PT Symmetric Optical Lattices. Phys. Rev. Lett. 100, 103904 (2008).
[7] Klaiman S., Günther U. & Moiseyev N. Visualization of Branch Points in PT-Symmetric Waveguides. Phys. Rev. Lett. 101, 080402 (2008).
[8] Longhi S. Bloch Oscillations in Complex Crystals with PT Symmetry. Phys. Rev. Lett. 103, 123601 (2009).
[9] Regensburger A., Bersch C., Miri M.-A., Onishchukov G., Christodoulides D. N. & Peschel U. Parity-time synthetic photonic lattices. Nature 488, 167 (2012).
[10] Malzard S., Poli C. & Schomerus H. Topologically Protected Defect States in Open Photonic Systems with Non-Hermitian Charge-Conjugation and Parity-Time Symmetry. Phys. Rev. Lett. 115, 200402 (2015).
[11] Zhen B. et al. Spawning rings of exceptional points out of Dirac cones. Nature 525, 354 (2015).
[12] Ding K., Ma G., Zhang Z. Q. & Chan C. T. Experimental Demonstration of an Anisotropic Exceptional Point. Phys. Rev. Lett. 121, 085702 (2018).
[13] Tang W., Jiang X., Ding K., Xiao Y.-X., Zhang Z. Q., Chan C. T. & Ma G. Exceptional nexus with a hybrid topological invariant. Science 370, 6520 (2020).
[14] Feng L. et al. Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies. Nat. Mater. 12, 108–113 (2013).
[15] Zhou H. et al. Observation of bulk Fermi arc and polarization half charge from paired exceptional points. Science 359, 1009-1012 (2018).
[16] Zeuner J. M., Rechtsman M. C., Plotnik Y., Lumer Y., Nolte S., Rudner M. S., Segev M. & Szameit A. Observation of a Topological Transition in the Bulk of a Non-Hermitian System. Phys. Rev. Lett. 115, 040402 (2015).
[17] Xiao L. et al. Observation of topological edge states in parity–time-symmetric quantum walks. Nat. Phys. 13, 1117 (2017).
[18] Weimann S. et al. Topologically protected bound states in photonic parity–time-symmetric crystals. Nat. Mater. 16, 433 (2017).
[19] Zhao H., Qiao X., Wu T., Midya B., Longhi S. & Feng L. Non-Hermitian Topological Light Steering. Science 365, 1163-1166 (2019).
[20] Yao S. & Wang Z. Edge States and Topological Invariants of Non-Hermitian Systems. Phys. Rev. Lett. 121, 086803 (2018).
[21] Yao S., Song F. & Wang Z. Non-Hermitian Chern Bands. Phys. Rev. Lett. 121, 136802 (2018).
[22] Song F., Yao S. & Wang Z. Non-Hermitian Skin Effect and Chiral Damping in Open Quantum Systems. Phys. Rev. Lett. 123, 170401 (2019).
[23] Song F., Yao S. & Wang Z. Non-Hermitian Topological Invariants in Real Space. Phys. Rev. Lett. 123, 246801 (2019).
[24] Yang Z., Zhang K., Fang C. & Hu J. Non-Hermitian Bulk-Boundary Correspondence and Auxiliary Generalized Brillouin Zone Theory. Phys. Rev. Lett. 125, 226402 (2020).
[25] Zhang K., Yang Z. & Fang C. Correspondence between Winding Numbers and Skin Modes in Non-Hermitian Systems. Phys. Rev. Lett. 125, 126402 (2020).
[26] Zhu X. et al. Photonic non-Hermitian skin effect and non-Bloch bulk-boundary correspondence. Phys. Rev. Research 2, 013280 (2020).
[27] Xiao L., Deng T., Wang K., Zhu G., Wang Z., Yi W. & Xue P. Non-Hermitian bulk–boundary correspondence in quantum dynamics. Nat. Phys. 16, 761-766 (2020).
[28] Weidemann S. et al. Topological funneling of light. Science 368, 311-314 (2020).
[29] Li L., Lee C. H. & Gong J. Topological Switch for Non-Hermitian Skin Effect in Cold-Atom Systems with Loss. Phys. Rev. Lett. 124, 250402 (2020).
[30] Kawabata K., Sato M. & Shiozaki K. Higher-order non-Hermitian skin effect. Phys. Rev. B 102, 205118 (2020).
[31] Benalcazar, W. A., Bernevig, B. A. & Hughes, T. L. Quantized electric multipole insulators. Science 357, 61-66 (2017).
[32] Serra-Garcia, M. et al. Observation of a phononic quadrupole topological insulator. Nature 555, 342-345 (2018).
[33] Peterson, C. W., Benalcazar, W. A., Hughes, T. L. & Bahl, G. A quantized mircowave quadrupole insulator with topological protected corner states. Nature 555, 346-350 (2018).
[34] Imhof, S. et al. Topolectrical circuit realization of topological corner modes. Nat. Phys. 14, 925-929 (2018).
[35] Noh, J. et al. Topological protection of photonic mid-gap defect modes. Nat. Photon. 12, 408-415 (2018).
[36] Schindler, F. et al. Higher-order topology in bismuth. Nat. Phys. 14, 918-924 (2018).
[37] Ezawa M. Higher-Order Topological Insulators and Semimetals on the Breathing Kagome and Pyrochlore Lattices. Phys. Rev. Lett. 120, 026801 (2018).
[38] Xue H., Yang Y., Gao F., Chong Y. & Zhang B. Acoustic higher-order topological insulator on a kagome lattice. Nat. Mater. 18, 108 (2019).
[39] Ni X., Weiner M., Alù A. & Khanikaev A. B. Observation of higher-order topological acoustic states protected by generalized chiral symmetry. Nat. Mater. 18, 113 (2019).
[40] Zhang X., Wang H.-X., Lin Z.-K., Tian Y., Xie B.-Y., Lu M.-H., Chen Y.-F. & Jiang J.-H. Second-order topology and multidimensional topological transitions in sonic crystals. Nat. Phys. 15, 582 (2019).
[41] Mittal S., Vikram Orre V., Zhu G., Gorlach M. A., Poddubny A. & Hafezi M. Photonic quadrupole topological phases. Nat. Photo. 13, 692 (2019).
[42] Xie B.-Y., Su G.-X., Wang H.-F., Su H., Shen X.-P., Zhan P., Lu M.-H., Wang Z.-L. & Chen Y.-F. Visualization of Higher-Order Topological Insulating Phases in Two-Dimensional Dielectric Photonic Crystals. Phys. Rev. Lett. 122, 233903 (2019).
[43] Zhang X., Xie B.-Y., Wang H.-F., Xu X., Tian Y., Jiang J.-H., Lu M.-H. & Chen Y.-F. Dimensional hierarchy of higher-order topology in three-dimensional sonic crystals. Nat. Commun. 10 (2019).
[44] Zhang X., Lin Z.-K., Wang H.-X., Xiong Z., Tian Y., Lu M.-H., Chen Y.-F. & Jiang J.-H. Symmetry-protected hierarchy of anomalous multipole topological band gaps in nonsymmorphic metacrystals. Nat. Commun. 11, 65 (2020).
[45] Li M., Zhirihin D., Gorlach M., Ni X., Filonov D., Slobozhanyuk A., Alù A. & Khanikaev A. B. Higher-order topological states in photonic kagome crystals with long-range interactions. Nat. Photon. 14, 89 (2020).
[46] Xie B.-Y. et al. Higher-order quantum spin Hall effect in a photonic crystal. Nat. Commun. 11, 3768 (2020).
[47] Liu Y., Leung S., Li F.-F., Lin Z.-K., Tao X., Poo Y. & Jiang J.-H. Bulk–disclination correspondence in topological crystalline insulators. Nature 589, 381-385 (2021).
[48] Peng Y.-G. et al. Experimental demonstration of anomalous Floquet topological insulator for sound. Nat. Commun. 7, 13368 (2016).