Reversible logic based on Quantum-dot Cellular Automata (QCA) is the most requirement for achieving nano-scale architecture that promises significantly high device integration density, high-speed calculation, and low power consumption. The arithmetic logic unit (ALU) is the significant component of a processor for processing and computing. The primary objective of this work is to develop a multi-layer fault-tolerant arithmetic logic unit using reversible logic in QCA technology. Additionally, the reversible ALU has divided into arithmetic (RAU) and a logic unit (RLU). A reversible 2:1 MUX using the Fredkin gate has been implemented to select either the arithmetic or logical operations. Besides, to improve the efficiency of arithmetic operations, a novel QCA reversible full adder is implemented. To build the ALU, fault-tolerant reversible logic gates are used. The proposed reversible multilayer QCA ALU is designed to carry out eight arithmetic and sixteen logical operations with a minimum number of gates, constant inputs, and garbage outputs compared to the existing works. The functional verification and simulation of the presented circuits are assessed by the QCADesigner tool.

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

Figure 9

Figure 10

Figure 11

Figure 12

Figure 13

Figure 14

Figure 15

Figure 16

Figure 17

Figure 18

Figure 19

Figure 20

Figure 21

Figure 22

Figure 23

Figure 24

Figure 25

Figure 26

Figure 27

Figure 28

Figure 29

Figure 30

Figure 31

Figure 32

This preprint is available for download as a PDF.

Loading...

Posted 11 Feb, 2021

###### No community comments so far

Posted 11 Feb, 2021

###### No community comments so far

Reversible logic based on Quantum-dot Cellular Automata (QCA) is the most requirement for achieving nano-scale architecture that promises significantly high device integration density, high-speed calculation, and low power consumption. The arithmetic logic unit (ALU) is the significant component of a processor for processing and computing. The primary objective of this work is to develop a multi-layer fault-tolerant arithmetic logic unit using reversible logic in QCA technology. Additionally, the reversible ALU has divided into arithmetic (RAU) and a logic unit (RLU). A reversible 2:1 MUX using the Fredkin gate has been implemented to select either the arithmetic or logical operations. Besides, to improve the efficiency of arithmetic operations, a novel QCA reversible full adder is implemented. To build the ALU, fault-tolerant reversible logic gates are used. The proposed reversible multilayer QCA ALU is designed to carry out eight arithmetic and sixteen logical operations with a minimum number of gates, constant inputs, and garbage outputs compared to the existing works. The functional verification and simulation of the presented circuits are assessed by the QCADesigner tool.

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

Figure 9

Figure 10

Figure 11

Figure 12

Figure 13

Figure 14

Figure 15

Figure 16

Figure 17

Figure 18

Figure 19

Figure 20

Figure 21

Figure 22

Figure 23

Figure 24

Figure 25

Figure 26

Figure 27

Figure 28

Figure 29

Figure 30

Figure 31

Figure 32

This preprint is available for download as a PDF.

Loading...