Barton, A., Hales, B., Waldbusser, G.G., Langdon, C., & Feely, R.A. (2012). The Pacific oyster, Crassostrea gigas , shows negative correlation to naturally elevated carbon dioxide levels: Implications for near-term ocean acidification effects. Limnology and Oceanography, 57, 698–710. https://doi.org/10.4319/lo.2012.57.3.0698
Bopp, L., Resplandy, L., Orr, J.C., Doney, S.C., Dunne, J.P., Gehlen, M., Halloran, P., Heinze, C., Ilyina, T., Séférian, R., Tjiputra, J., & Vichi, M. (2013). Multiple stressors of ocean ecosystems in the 21st century: Projections with CMIP5 models. Biogeosciences, 10, 6225–6245. https://doi.org/10.5194/bg-10-6225-2013
Bustin, S.A., Benes, V., Garson, J.A., Hellemans, J., Huggett, J., Kubista, M., Mueller, R., Nolan, T., Pfaffl, M.W., Shipley, G.L., Vandesompele, J., and Wittwer, C.T. (2009). The MIQE guidelines: Minimum information for publication of quantitative real-time PCR experiments. Clinical Chemistry 55, 611–622. https://doi.org/10.1373/clinchem.2008.112797
Crain, C.M., Kroeker, K., & Halpern, B.S. (2008). Interactive and cumulative effects of multiple human stressors in marine systems. Ecology Letters, 11, 1304–1315. https://doi.org/10.1111/j.1461-0248.2008.01253.x
Chatzinikolaou E., Grigoriou P., Martini E. & Aspasia S. 2019). Impacts of ocean acidification and warming on the feeding behaviour of two gastropod species. Mediterranean Marine Science, 20(4), 669-679. https://doi.org/10.12681/mms.19187
Duarte, C.M., Hendriks, I.E., Moore, T.S., Olsen, Y.S., Steckbauer, A., Ramajo, L., Carstensen, J., Trotter, J.A., & McCulloch, M. (2013). Is Ocean Acidification an Open-Ocean Syndrome? Understanding Anthropogenic Impacts on Seawater pH. Estuaries and Coasts 36, 221–236. https://doi.org/10.1007/s12237-013-9594-3
Doney, S.C., Fabry, V.J., Feely, R.A., & Kleypas, J.A. (2009). Ocean Acidification: The Other CO2 Problem . Annual Review of Marine Science, 1, 169–192. https://doi.org/10.1146/annurev.marine.010908.163834
Dupont, S., Dorey, N., Stumpp, M., Melzner, F., & Thorndyke, M. (2013). Long-term and trans-life-cycle effects of exposure to ocean acidification in the green sea urchin Strongylocentrotus droebachiensis. Marine Biology 160, 1835–1843. https://doi.org/10.1007/s00227-012-1921-x
Feely, R.A., Sabine, C.L., Lee, K., Berelson, W., Kleypas, J., Fabry, V.J., and Millero, F.J. (2004). Impact of Anthropogenic CO2 on the CaCO3 System in the Oceans. Science 305, 362–366. https://doi.org/10.1126/science.1097329
Foo, S.A., Dworjanyn, S.A., Poore, A.G.B., & Byrne, M. (2012). Adaptive capacity of the habitat modifying sea urchin Centrostephanus rodgersii to ocean warming and ocean acidification: Performance of early embryos. PLoS ONE 7. https://doi.org/10.1371/journal.pone.0042497
Gattuso, J.P., Magnan, A., Billé, R., Cheung, W.W.L., Howes, E.L., Joos, F., Allemand, D., Bopp, L., Cooley, S.R., Eakin, C.M., Hoegh-Guldberg, O., Kelly, R.P., Pörtner, H.O., Rogers, A.D., Baxter, J.M., Laffoley, D., Osborn, D., Rankovic, A., Rochette, J., Sumaila, U.R., Treyer, S., & Turley, C. (2015). Contrasting futures for ocean and society from different anthropogenic CO2 emissions scenarios. Science, 349,aac4722. https://doi.org/10.1126/science.aac4722
Godbold J.A. & Solan M. (2013). Long-term effects of warming and ocean acidification are modified by seasonal variation in species responses and environmental conditions. Philosophical transactions of the Royal Society B, 368:20130186. https://doi.org/10.1098/rstb.2013.0186
Hauton, C., Tyrrell, T., & Williams, J. (2009). The subtle effects of sea water acidification on the amphipod Gammarus locusta. Biogeosciences 5, 1479–1489. https://doi.org/10.5194/bg-6-1479-2009
Harvey, B.P., Gwynn-Jones, D., & Moore, P.J. (2013). Meta-analysis reveals complex marine biological responses to the interactive effects of ocean acidification and warming. Ecology and Evolution, 3, 1016–1030. https://doi.org/10.1002/ece3.516
Hofmann, G. E., Smith, J.E., Johnson, K.S., Send, U., Levin, L.A., Micheli, F., Paytan, A., Price, N.N., Peterson, B., Takeshita, Y., Matson, P.G., de Crook, E., Kroeker, K.J., Gambi, M.C., Rivest, E.B., Frieder, C.A., Yu, P.C., & Martz, T.R. (2011). High-frequency dynamics of ocean pH: A multi-ecosystem comparison. PLoS ONE 6(12): e28983. https://doi.org/10.1371/journal.pone.0028983
Hofmann, G.E., & Todgham, A. (2010). Living in the Now: Physiological Mechanisms to Tolerate a Rapidly Changing Environment. Annual Review of Physiology, 72, 127–145. https://doi.org/10.1146/annurev-physiol-021909-135900
IPCC (2013) Climate change 2013: The Physical Science Basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change, Cambridge, United Kingdom and New York, NY, USA. https://doi.org/10.1017/CBO9781107415324
Kelly, M.W., Sanford, E., & Grosberg, R.K., (2012). Limited potential for adaptation to climate change in a broadly distributed marine crustacean. Proceedings of the Royal Society Part B, 279, 349-356. https://doi.org/10.1098/rspb.2011.0542
Kroeker, K.J., Kordas, R.L., Crim, R., Hendriks, I.E., Ramajo, L., Singh, G.S., Duarte, C.M., and Gattuso, J.P. (2013). Impacts of ocean acidification on marine organisms: Quantifying sensitivities and interaction with warming. Global Change Biology, 19, 1884–1896. https://doi.org/10.1111/gcb.12179
Kroeker, K.J., Kordas, R.L., Crim, R.N., & Singh, G.G. (2010). Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms. Ecology Letters, 13, 1419–1434. https://doi.org/10.1111/j.1461-0248.2010.01518.x
Lardies, M.A., Arias, M.B., Poupin, M.J., Manríquez, P.H., Torres, R., Vargas, C.A., Navarro, J.M., & Lagos, N.A. (2014). Differential response to ocean acidification in physiological traits of Concholepas concholepas populations. Journal of Sea Research, 90, 127–134. https://doi.org/10.1016/j.seares.2014.03.010
Lewis, E. R., & Wallace, D. W. R. (1998). Program Developed for CO2 System Calculations. United States. https://doi.org/10.15485/1464255
Liu, W., Huang, X., Lin, J., & He, M. (2012). Seawater acidification and elevated temperature affect gene expression patterns of the pearl oyster Pinctada fucata. PLoS ONE 7(3): e33679. https://doi.org/10.1371/journal.pone.0033679
Mardones, M.L., Fenberg, P.B., Thatje, S. & Hauton, C. (2020). Intraspecific plasticity and trans-generational adaptation of reproductive traits and early development in a temperate marine neogastropod. Marine Environmental Research, 161, 105123. https://doi.org/10.1016/j.marenvres.2020.105123
Martel, C., Guarini, J.M., Blanchard, G., Sauriau, P.G., Trichet, C., Robert, S., & Garcia-Meunier, P. (2004). Invasion by the marine gastropod Ocinebrellus inornatus in France. III. Comparison of biological traits with the resident species Ocenebra erinacea. Marine Biology 146, 93–102. https://doi.org/10.1007/s00227-004-1421-8
Mayor, D.J., Sommer, U., Cook, K.B., & Viant, M.R. (2015). The metabolic response of marine copepods to environmental warming and ocean acidification in the absence of food. Scientific Reports, 5, 1–12. https://doi.org/10.1038/srep13690
Meinshausen, M., Smith, S.J., Calvin, K., Daniel, J.S., Kainuma, M.L.T., Lamarque, J., Matsumoto, K., Montzka, S.A., Raper, S.C.B., Riahi, K., Thomson, A., Velders, G.J.M., & van Vuuren, D.P.P. (2011). The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Climatic Change, 109, 213. https://doi.org/10.1007/s10584-011-0156-z
Metzger, R., Sartoris, F.J., Langenbuch, M., & Pörtner, H.O. (2007). Influence of elevated CO2 concentrations on thermal tolerance of the edible crab Cancer pagurus. Journal of Thermal Biology 32, 144–151. https://doi.org/10.1016/j.jtherbio.2007.01.010
Melatunan, S., Calosi, P., Rundle, S.d., Widdicombe, S., Moody, A.J. (2013). Effects of ocean acidification and elevated temperature in shell plasticity and its energetic basis in an intertidal gastropod. Marine Ecology Progress Series, 472, 155-168. https://doi.org/10.3354/meps10046
Michaelidis, B., Ouzounis, C., Paleras, A., & Pörtner, H.O. (2005). Effects of long-term moderate hypercapnia on acid-base balance and growth rate in marine mussels Mytilus galloprovincialis. Marine Ecology Progress Series, 293, 109–118. https://doi.org/10.3354/meps293109
Morris, J.P., Thatje, S., & Hauton, C. (2013). The use of stress-70 proteins in physiology: A re-appraisal. Molecular Ecology, 22, 1494–1502. https://doi.org/10.1111/mec.12216
Nagelkerken, I., & Munday, P.L. (2016). Animal behaviour shapes the ecological effects of ocean acidification and warming: Moving from individual to community-level responses. Global Change Biology, 22, 974–989. https://doi.org/10.1111/gcb.13167
Navarro, J.M., Leiva, G.E., Gallardo, C.S., & Varela, C. (2002). Influence of diet and temperature on physiological energetics of Chorus giganteus (Gastropoda: Muricidae) during reproductive conditioning. New Zealand Journal of Marine and Freshwater Research, 36(2), 321-332. https://doi.org/10.1080/00288330.2002.9517089
Orr, J.C., Fabry, V.J., Aumont, O., Bopp, L., Doney, S.C., Feely, R.A., Gnanadesikan, A., Gruber, N., Ishida, A., Joos, F., Key, R.M., Lindsay, K., Maier-Reimer, E., Matear, R., Monfray, P., Mouchet, A., Najjar, R.G., Plattner, G.K., Rodgers, K.B., Sabine, C.L., Sarmiento, J.L., Schlitzer, R., Slater, R.D., Totterdell, I.J., Weirig, M.F., Yamanaka, Y., & Yool, A. (2005). Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature, 437, 681–686. https://doi.org/10.1038/nature04095
Parker, L.M., Ross, P., O’Connor, W., Pörtner, H., Scanes, E., & Wright, J. (2013). Predicting the Response of Molluscs to the Impact of Ocean Acidification. Biology, 2, 651–692. https://doi.org/10.3390/biology2020651
Pörtner, H.O. (2008). Ecosystem effects of ocean acidification in times of ocean warming: A physiologist’s view. Marine Ecology Progress Series, 373, 203–217. https://doi.org/10.3354/meps07768
Ramajo, L., Pérez-León, E., Hendriks, I.E., Marbà, N., Krause-Jensen, D., Sejr, M.K., Blicher, M.E., Lagos, N.A., Olsen, Y.S., & Duarte, C.M. (2016). Food supply confers calcifiers resistance to ocean acidification. Scientific Reports, 6, 1–6. https://doi.org/10.1038/srep19374
Riebesell U., Fabry V. J., Hansson L. & Gattuso J.-P. (eds) (2011) Guide to best practices for ocean acidification research and data reporting. [reprinted edition including erratum]. Luxembourg, Publications Office of the European Union, 258pp. (EUR 24872 EN). https://doi.org/10.2777/66906
Rühl S., Calosi P., Faulwetter S., Keklikoglow K., Widdicombe S. & Queirós A.M. (2017). Long-term exposure to elevated pCO2 more than warming modifies early-life shell growth in a temperate gastropod. Journal of Marine Science, 74(4), 113-1124. https://doi.org/10.1093/icesjms/fsw242
Shi, L. (2000) Development and application of a three-dimensional water quality model in a partially-mixed estuary, Southampton Water, UK. Phd diss., University of Southampton.
Smith, K.E., Reed, A.J., & Thatje, S. (2015). Intracapsular development and dispersal polymorphism in the predatory gastropod Ocenebra erinaceus (Linnaeus 1758). Helgoland Marine Research 69, 249–258. https://doi.org/10.1007/s10152-015-0433-8
Somero, G.N. (2002). Thermal physiology and vertical zonation of intertidal animals: Optima, limits, and costs of living. Integrative and Comparative Biology, 42, 780–789. https://doi.org/10.1093/icb/42.4.780
Tomanek, L., & Somero, G.N. (1999). Evolutionary and acclimation-induced variation in the heat-shock responses of congeneric marine snails (genus Tegula) from different thermal habitats: Implications for limits of thermotolerance and biogeography. Journal of Experimental Biology, 202, 2925–2936.
Thomsen, J., Casties, I., Pansch, C., Körtzinger, A., & Melzner, F. (2013). Food availability outweighs ocean acidification effects in juvenile Mytilus edulis: Laboratory and field experiments. Global Change Biology, 19, 1017–1027. https://doi.org/10.1111/gcb.12109
Uthicke, S., Liddy, M., Nguyen, H.D., & Byrne, M. (2014). Interactive effects of near-future temperature increase and ocean acidification on physiology and gonad development in adult Pacific sea urchin, Echinometra sp. A. Coral Reefs, 33, 831–845. https://doi.org/10.1007/s00338-014-1165-y
Whiteley, N., & Mackenzie, C. (2016). Physiological responses of marine invertebrates to thermal stress. In Stressors in the Marine Environment: Physiological and ecological responses; societal implications. : Oxford University Press. https://doi.org/10.1093/acprof:oso/9780198718826.001.0001
Zhang H., Shin P.K.S & Cheung S.G. (2015) Physiological responses and scope for growth upon medium-term exposure to the combined effects of ocean acidification and temperature in a subtidal scavenger Nassarius conoidalis. Marine Environmental Research, 106, 51-60. https://doi.org/10.1016/j.marenvres.2015.03.001