[1] Masini M, Bugliani M, Lupi R, Guerra SD, Boggi U, Filipponi F, Marselli L, Masiello P and Marchetti P. Autophagy in human type 2 diabetes pancreatic beta cells. Diabetologia 2009; 52: 1083-1086.
[2] Satyanarayana A and Kaldis P. Mammalian cell-cycle regulation: several Cdks, numerous cyclins and diverse compensatory mechanisms. 28: 2925-2939.
[3] Marchetti P and Masini M. Autophagy and the pancreatic beta-cell in human type 2 diabetes. Autophagy 2009; 5: 1055-1056.
[4] Fang L, Zhou Y, Cao H, Wen P, Jiang L, He W, Dai C and Yang J. Autophagy attenuates diabetic glomerular damage through protection of hyperglycemia-induced podocyte injury. PLoS One 2013; 8: e60546.
[5] Kitada M, Kume S, Takeda-Watanabe A, Kanasaki K and Koya D. Sirtuins and renal diseases: relationship with aging and diabetic nephropathy. Clinical Science 2012; 124: 153-164.
[6] Sarah A J. Autophagy and inflammatory diseases. Immunology and cell biology 2013; 3:
[7]
[8] Mizushima N and Levine B. Autophagy in mammalian development and differentiation. Nature Cell Biology 2010; 12: 823-830.
[9] Zhang XQ, Dong JJ, Cai T, Shen X, Zhou XJ and Liao L. High glucose induces apoptosis via upregulation of Bim expression in proximal tubule epithelial cells. Oncotarget 2017; 8: 24119-24129.
[10] Mizushima N, Yoshimori T and Levine B. Methods in Mammalian Autophagy Research. 140: 0-326.
[11] Candeias E, Sebastiao I, Cardoso S, Carvalho C, Santos MS, Oliveira CR, Moreira PI and Duarte AI. Brain GLP-1/IGF-1 Signaling and Autophagy Mediate Exendin-4 Protection Against Apoptosis in Type 2 Diabetic Rats. Mol Neurobiol 2018; 55: 4030-4050.
[12] Dunlop EA, Hunt DK, Acosta-Jaquez HA, Fingar DC and Tee AR. ULK1 inhibits mTORC1 signaling, promotes multisite Raptor phosphorylation and hinders substrate binding. Autophagy 2011; 7: 737-747.
[13] Xu J, Deng Y, Wang Y, Sun X, Chen S and Fu G. SPAG5-AS1 inhibited autophagy and aggravated apoptosis of podocytes via SPAG5/AKT/mTOR pathway. Cell Prolif 2020; 53: e12738.
[14] Li C, Guan XM, Wang RY, Xie YS, Zhou H, Ni WJ and Tang LQ. Berberine mitigates high glucose-induced podocyte apoptosis by modulating autophagy via the mTOR/P70S6K/4EBP1 pathway. Life Sci 2020; 243: 117277.
[15] Zheng D, Tao M, Liang X, Li Y, Jin J and He Q. p66Shc regulates podocyte autophagy in high glucose environment through the Notch-PTEN-PI3K/Akt/mTOR pathway. Histol Histopathol 2019; 18178.
[16] Zhou J, Tan SH, Codogno P and Shen HM. Dual suppressive effect of MTORC1 on autophagy: tame the dragon by shackling both the head and the tail. Autophagy 2013; 9: 803-805.
[17] Kim WY, Nam SA, Song HC, Ko JS, Park SH, Kim HL, Choi EJ, Kim YS, Kim J and Kim YK. The role of autophagy in unilateral ureteral obstruction rat model. Nephrology (Carlton) 2012; 17: 148-159.
[18] Tharaux PL and Huber TB. How many ways can a podocyte die? Semin Nephrol 2012; 32: 394-404.
[19] Boya P, Reggiori F and Codogno P. Emerging regulation and functions of autophagy. Nature Cell Biology 2013; 15: 713-720.
[20] Tanida I, Ueno T and Kominami E. LC3 and Autophagy. Methods Mol Biol 2008; 445: 77-88.
[21] Lenoir O, Jasiek M, Henique C, Guyonnet L, Hartleben B, Bork T, Chipont A, Flosseau K, Bensaada I, Schmitt A, Masse JM, Souyri M, Huber TB and Tharaux PL. Endothelial cell and podocyte autophagy synergistically protect from diabetes-induced glomerulosclerosis. Autophagy 2015; 11: 1130-1145.
[22] Wu F, Li S, Zhang N, Huang W, Li X, Wang M, Bai D and Han B. Hispidulin alleviates high-glucose-induced podocyte injury by regulating protective autophagy. Biomed Pharmacother 2018; 104: 307-314.
[23] Lim JH, Kim HW, Kim MY, Kim TW, Kim EN, Kim Y, Chung S, Kim YS, Choi BS, Kim YS, Chang YS, Kim HW and Park CW. Cinacalcet-mediated activation of the CaMKKbeta-LKB1-AMPK pathway attenuates diabetic nephropathy in db/db mice by modulation of apoptosis and autophagy. Cell Death Dis 2018; 9: 270.
[24] Zhao X, Chen Y, Tan X, Zhang L, Zhang H, Li Z, Liu S, Li R, Lin T, Liao R, Zhang Q, Dong W, Shi W and Liang X. Advanced glycation end-products suppress autophagic flux in podocytes by activating mammalian target of rapamycin and inhibiting nuclear translocation of transcription factor EB. J Pathol 2018; 245: 235-248.
[25] Ravindran S, Kuruvilla V, Wilbur K and Munusamy S. Nephroprotective Effects of Metformin in Diabetic Nephropathy. J Cell Physiol 2017; 232: 731-742.
[26] Wu J, Zhang R, Torreggiani M, Ting A, Xiong H, Striker GE, Vlassara H and Zheng F. Induction of diabetes in aged C57B6 mice results in severe nephropathy: an association with oxidative stress, endoplasmic reticulum stress, and inflammation. Am J Pathol 2010; 176: 2163-2176.