Abdur, R., Ran, T., Kamyab, M. & Tayyab, N. (2019). Twitter Sentiment Analysis: A Case Study for Apparel Brands. Journal of Physics, 1176(2), doi:10.1088/1742- 6596/1176/2/022015
Arathi, H., Gabriel, S., Karina, T., Victor, M., Hector, P. & Jesus, O. (2021). Social Sentiment Sensor in Twitter for Predicting Cyber-Attacks Using l1 Regularization. Sensors, DOI: 10.3390/s18051380s
Ali, H., Sana, M., Ahmad, K., & Shahaboddin, S. (2018). Machine Learning-Based Sentiment Analysis for Twitter Accounts. Mathematical and computational applications, 23(1), https://doi.org/10.3390/mca23010011
Banoth, L. & Huy, N. (2021). Twitter Sentiment Analysis using Machine Learning Techniques. International Journal of Engineering and Advanced Technology (IJEAT),(pp,2249 – 8958), 9 (3)
Chong S., Dubey, G., & Rana, A. (2021). Product opinion mining using sentiment analysis on smartphone reviews. 2017 6th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO), Noida, India, 2017, (pp. 377-383), Doi: 10.1109/ICRITO.2017.8342455.
Despoina, C., Ilias, L., Jeremy, B., Emiliano, D. C., Gianluca, S., Anthena, V. & Nicolas, K. (2019). Detecting Cyber-bullying and Cyber-aggression in Social Media. ACM
Transactions on the Web, 13(3), https://doi.org/10.1145/3343484.
Fadelli, I. (2019). A deep learning-based method to detect Cyber-bullying on twitter. tech explore. https://techxplore.com/news/2019-01-deep-learning-based-method- cyberbullying- twitter.html
Flora, P., Claus, E. & Christine, S. (2019). Let’s play on Facebook: using sentiment analysis and social media metrics to measure the success of YouTube gamers’ post types. Personal and Ubiquitous Computing. https://doi.org/10.1007/s00779-019-01361-7 .
Garg, V. K. (2018). Deep Learning as a Frontier of Machine Learning: A Review. International Journal of Computer Applications (pp, 0975 – 8887) , 182 (1).
Glenn, S. & Diane, F. (2017). The Social Networks of Cyber-bullying on Twitter. International Journal of Technoethics, 8(2), https://doi.org/10.4018/IJT.2017070101
Joshi, S., & Deshpande, D. (2018). Twitter Sentiment Analysis System. International Journal of Computer Applications, 180, (pp,35-39), DO - 10.5120/ijca2018917319. Journal of Computational Science,36(2), https://doi.org/10.1016/j.jocs.2019.05.009.
Kashfia, S., & Reda, A. (2019). Emotion and sentiment analysis from Twitter text.
Kumar, A., Sachdeva, N.(2021) Multimodal cyberbullying detection using capsule network with dynamic routing and deep convolutional neural network. Multimedia Systems (2021). https://doi.org/10.1007/s00530-020-00747-5
László, N. & Attila, K. (2020). Social media sentiment analysis based on COVID-19. Journal of Information and Telecommunication, DOI: 10.1080/24751839.2020.1790793.
Lei, Z., Shuai, W. & Bing, L. (2016). Deep Learning for Sentiment Analysis: A Survey.
Computation and Language. arXiv:1801.07883 [cs.CL]
Luis, M., Juan, C. M. & Glen, M. (2019). Social Media as a Resource for Sentiment Analysis of Airport Service Quality (ASQ). Journal of Air Transport Management, 178, (pp, 106-
115), https://doi.org/10.1016/j.jairtraman.2019.01.004.
Maha, H., Marwan, T. & Nagwa, E. (2018). Sentiment Analysis of Arabic Tweets using Deep Learning. Computer and Systems Engineering Department, Alexandria University, Egypt (pp, 114-122), 142, https://doi.org/10.1016/j.procs.2018.10.466.
Mangaonkar, A. (2017). Collaborative Detection Of Cyber-bullying Behavior In Twitter Data (Master’s Thesis, Purdue University, Indianapolis, Indiana). Retrieved from https://core.ac.uk/download/pdf/84831838.pdf
Mohssen, M. B. (2017). Machine Learning Algorithm And Application.
Matthew, J. H. & Andrew M, S. (2020). Machine Learning and Artificial Intelligence: Definitions, Applications, and Future Directions. Current Reviews in Musculoskeletal Medicine (pp, 69–76).
Meruja, S. (2017, August 29). Introduction to Artificial Iintelligence. https://becominghuman.ai/introduction-to-artificial-intelligence-5fba0148ec99
Muhammed, M., Khan, M., & Bashier, E. (2021). Machine learning algorithm and application. Journal of Machine learning: algorithm and application. DO - 10.1201/9781315371658
Nakano, T., Suda, T., Okaie, Y., & Moore, M. (2017). Analysis of Cyber Aggression and Cyber- Bullying in Social Networking. Conference: 2016 IEEE Tenth International Conference on Semantic Computing (ICSC),(pp,337-342),DOI: 10.1109/ICSC.2016.111
Nhan, C. D., María, N. M., & Fernando, D. P. (2020). Sentiment Analysis Based on Deep Learning:A Comparative Study. Journals of Electronics, 9(3),(pp,483) doi:10.3390/electronics9030483
Pandey, H., Mishra, A., & Kumar, D. (2019). Various Aspects of Sentiment Analysis: A Review. ICACSE 2019: Proceedings.
Ravindran Y. C., Aaron, S. C., Jayashree, K., Michael, F.C., & Peter, J. C. (2020) Introduction to Machine Learning, Neural Networks, and Deep Learning. Trans. Vis. Sci. Tech. 2020;9(2):14. doi: https://doi.org/10.1167/tvst.9.2.14.
Shalni, P. & Suman, B. (2019). Real Time Cyber-bullying Detection. International Journal of Engineering and Advanced Technology (IJEAT), ISSN: 2249 – 8958,9(2).
Shetty, J., Chaithali, K.N., Shetty, A.M., Varsha, B., Puthran, V. (2021). Cyber-Bullying Detection: A Comparative Analysis of Twitter Data. In: Chiplunkar, N., Fukao, T. (eds) Advances in Artificial Intelligence and Data Engineering. Advances in Intelligent Systems and Computing, vol 1133. Springer, Singapore. https://doi.org/10.1007/978-981-15-3514-7_62.
T.T, Sherly and B. Rosiline Jeetha. “Sentiment Analysis and Deep Learning Based Cyber Bullying
Detection in Twitter Dataset.” International Journal of Recent Technology and Engineering (IJRTE) (2021): n. pag.
Soumyabrata, M., Kumarjit, G., Nishan, S., Sekhon, R., & Kumar, J. (2018). Sarcasm Detection On Twitter Data(Batchelor Degree Project). RCC Institute Of Information Technology [Affiliated to West Bengal University of Technology] Canal South Road, Beliaghata, Kolkata-700105
Taiwo, O. A. (February 1st 2010). Types of Machine Learning Algorithms, New Advances in Machine Learning, Yagang Zhang, IntechOpen, DOI: 10.5772/9385. Available from: https://www.intechopen.com/books/new-advances-in-machine-learning/types-of- machine-learning-algorithms
Thirupathi, R.K., Sai, B. A., Chaitanya, V. P. (2017) . Implementation Of Sentiment Analysis On Twitter Data. International Journal of Pure and Applied Mathematics,116(5), (pp,69-74),
Available from: http://www.ijpam.eu
Vignesh, R., Christina, J., & Chandrasekaran, K. (2018). Sentiment Extraction from Naturalistic Video. Procedia Computer Science,143, (pp, 626-634), https://doi.org/10.1016/j.procs.2018.10.454.
Vijayakumar, V., & Nedunchezhian, R. (2012). A study on video data mining. International Journal of Multimedia Information Retrieval, 1(3), (pp,153–172). https://doi.org/10.1007/s13735-012-0016-2
Wehle, H. D. (2017). Machine Learning, Deep Learning, and AI: What’s the Difference?
Available from: https://www.researchgate.net/publication/318900216
Wlodarczak, P., Soar, J., & Ally, M. (2015). Multimedia data mining using deep learning. 2015 Fifth International Conference on Digital Information Processing and Communications (ICDIPC), Sierre, Switzerland, 2015, (pp. 190-196), doi: 10.1109/ICDIPC.2015.7323027.
Yang, N., Cao, S. & Zhang, S. (2016). Data analysis system for online short video comments. 2016 IEEE/ACIS 15th International Conference on Computer and Information Science (ICIS), Okayama, Japan, 2016, pp. 1-6, doi: 10.1109/ICIS.2016.7550946.
Yuan, B. (2016). Sentiment Analysis Of Twitter Data (Master’s Thesis) Rensselaer Polytechnic Institute Troy, New York.
Yuxiao, C., Jianbo, Y., Quanzeng, Y., & Jiebo, L. (2018). Twitter Sentiment Analysis via Bi- sense Emoji Embedding and Attention-based LSTM. Computation and Language (cs.CL); Multimedia (cs.MM). doi: 10.1145/3240508.3240533