[1] Suva, M.; Sureja, V.; & Kheni, D. (2016). Novel insight on probiotic Bacillus subtilis: Mechanism of action and clinical applications. Journal of Current Research in Scientific Medicine, 2(2), 65-72.
[2] Elshaghabee, F. M. F.; Rokana, N.; Gulhane, R. D.; Sharma, C.; & Panwar, H. (2017). Bacillus As Potential Probiotics: Status, Concerns, and Future Perspectives. Frontiers in Microbiology, 8, 01490.
[3] Olmos, J. (2014). Bacillus subtilis A Potential Probiotic Bacterium to Formulate Functional Feeds for Aquaculture. Journal of Microbial & Biochemical Technology, 06(07), 361-365.
[4] Anwar, Z.; Gulfraz, M.; & Irshad, M. (2019). Agro-industrial lignocellulosic biomass a key to unlock the future bio-energy: A brief review. Journal of Radiation Research and Applied Sciences, 7(2), 163-173.
[5] Chang, Y.; Chang, K.; Lee, C.; Hsu, Y.; Huang, C.; & Jang, H. (2015). Microbial lipid production by oleaginous yeast Cryptococcus sp. in the batch cultures using corncob hydrolysate as carbon source. Biomass and Bioenergy, 72, 95-103.
[6] Liu, Q.; Zhang, T.; Liao, Y.; Tan, J.; Wang, T.; Qiu, S.; He, M.; & Ma, L. (2017). Production of C5/C6 Sugar Alcohols by Hydrolytic Hydrogenation of Raw Lignocellulosic Biomass over Zr Based Solid Acids Combined with Ru/C. ACS sustainable chemistry & engineering, 5(7), 5940-5950.
[7] Martinez, R.; Flores, A. D.; Dufault, M. E.; & Wang, X. (2019). The XylR variant (R121C and P363S) releases arabinose‐induced catabolite repression on xylose fermentation and enhances coutilization of lignocellulosic sugar mixtures. Biotechnology and Bioengineering, 116(12), 3476-3481.
[8] Phaiboonsilpa, N.; Chysirichote, T.; Champreda, V.; & Laosiripojana, N. (2020). Fermentation of xylose, arabinose, glucose, their mixtures and sugarcane bagasse hydrolyzate by yeast Pichia stipitis for ethanol production. Energy Reports, 6, 710-713.
[9] Granados-Arvizu, J. A.; Madrigal-Perez, L. A.; Canizal-García, M.; González-Hernández, C.; García-Almendárez, B. E.; & Regalado-González, C. (2018). Effect of cytochrome bc1 complex inhibition during fermentation and growth of Scheffersomyces stipitis using glucose, xylose or arabinose as carbon sources. FEMS yeast research, 19(2), 1-8.
[10] Gullón, P.; Eibes, G.; Lorenzo, J. M.; Pérez -Rodríguez, N.; Lú - Chau, T. A.; & Gullón, B. (2020). Green sustainable process to revalorize purple corn cobs within a biorefinery frame: Co-production of bioactive extracts. Science of The Total Environment, 709, 136236.
[11] Zhang, B.; Li, X.; Fu, J.; Li, N.; Wang, Z.; Tang, Y.; & Chen, T. (2016). Production of Acetoin through Simultaneous Utilization of Glucose, Xylose, and Arabinose by Engineered Bacillus subtilis. Plos One, 11(7), e159298.
[12] Nguyen, T. Y.; Cai, C. M.; Kumar, R.; & Wyman, C. E. (2017). Overcoming factors limiting high-solids fermentation of lignocellulosic biomass to ethanol. Proceedings of the National Academy of Sciences, 114(44), 11673-11678.
[13] Gandla, M.; Martín, C.; & Jönsson, L. (2018). Analytical Enzymatic Saccharification of Lignocellulosic Biomass for Conversion to Biofuels and Bio-Based Chemicals. Energies, 11(11), 2936-2936.
[14] Bhatia, S. K.; Kim, S.; Yoon, J.; & Yong, Y. (2017). Current status and strategies for second generation biofuel production using microbial systems. Energy Conversion and Management, 148, 1142-1156.
[15] Wang, G.; Tan, L.; Sun, Z.; Gou, Z.; Tang, Y.; & Kida, K. (2014). Production of bioethanol from rice straw by simultaneous saccharification and fermentation of whole pretreated slurry using Saccharomyces cerevisiaeKF-7. Environmental Progress & Sustainable Energy, 34(2), 582-588.
[16] Lee, I.; & Yu, J. (2020). The production of fermentable sugar and bioethanol from acacia wood by optimizing dilute sulfuric acid pretreatment and post treatment. Fuel, 275, 117943.
[17] Ouyang, S.; Qiao, H.; Xu, Q.; Zheng, Z.; & Ouyang, J. (2019). Development of two-step pretreatment of Chinese fir sawdust using dilute sulfuric acid followed by sodium chlorite for bioethanol production. Cellulose, 26(15), 8513-8524.
[18] Guo, J.; Cao, R.; Huang, K.; Zhou, X.; & Xu, Y. (2020). Comparison of selective acidolysis of xylan and enzymatic hydrolysability of cellulose in various lignocellulosic materials by a novel xylonic acid catalysis method. Bioresource Technology, 304, 122943.
[19] Jönsson, L. J.; & Martín, C. (2016). Pretreatment of lignocellulose: Formation of inhibitory by-products and strategies for minimizing their effects. Bioresource Technology, 199, 103-112.
[20] Moreno, A. D.; Carbone, A.; Pavone, R.; Olsson, L.; & Geijer, C. (2019). Evolutionary engineered Candida intermedia exhibits improved xylose utilization and robustness to lignocellulose-derived inhibitors and ethanol. Applied Microbiology and Biotechnology, 103(3), 1405-1416.
[21] Fernanda, R.; Anil, K.; Deb, P.; Sushil, A.; Hui, L.; & Samir, K. (2017). Environmental application of biochar: Current status and perspectives. Bioresource Technology, 246, 110-122.
[22] Farmanbordar, S.; Amiri, H.; & Karimi, K. (2018). Simultaneous organosolv pretreatment and detoxification of municipal solid waste for efficient biobutanol production. Bioresource Technology, 270, 236-244.
[23] Romaní, A.; Ruiz, H. A.; Pereira, F. B.; Teixeira, J.; & Domingues, L. (2014). Integrated approach for effective bioethanol production using whole slurry from autohydrolyzed Eucalyptus globulus wood at high-solid loadings. Fuel, 135, 482-491.
[24] Anwar, Z.; Gulfraz, M.; & Irshad, M. (2019). Agro-industrial lignocellulosic biomass a key to unlock the future bio-energy: A brief review. Journal of Radiation Research and Applied Sciences, 7(2), 163-173.
[25] Kumar, V.; Sandhu, P. P.; Ahluwalia, V.; Mishra, B. B.; & Yadav, S. K. (2019). Improved upstream processing for detoxification and recovery of xylitol produced from corncob. Bioresource Technology, 291, 121931.