[1] Cutolo Maurizio, Soldano Stefano, Smith Vanessa. Pathophysiology of systemic sclerosis: current understanding and new insights. Expert Rev Clin Immunol. 2019 Jul; 15(7):753-764.
[2] Nicolosi PA, Tombetti E, Maugeri N, Rovere-Querini P, Brunelli S, Manfredi AA. Vascular Remodelling and Mesenchymal Transition in Systemic Sclerosis. Stem Cells Int. 2016; doi:10. 1155/2016/4636859.
[3] Beon M, Harley R A, Wessels A, Wessels A, Silver RM, Ludwicka-Bradley A. Myofibroblast induction and microvascular alteration in scleroderma lung fibrosis. Clin. Exp. Rheumatol. 2004; 22:733-42.
[4] Mendoza Fabian A, Piera-Velazquez Sonsoles, Farber John L, Feghali-Bostwick Carol, Jiménez Sergio A. Endothelial Cells Expressing Endothelial and Mesenchymal Cell Gene Products in Lung Tissue From Patients With Systemic Sclerosis-Associated Interstitial Lung Disease. Arthritis and Rheumatology. 2015; 68:210-217.
[5] Manetti M, Romano E, Rosa I, Guiducci S, Bellando-Randone S, De Paulis A, et al. Endothelial-to-mesenchymal transition contributes to endothelial dysfunction and dermal fibbrosis in systemic sclerosis. Annals Rheum Dis. 2017; 76:924-34.
[6] Zhang Bo, Niu Wen, Dong Hai-Ying, Liu Man-Ling, Luo Ying, Li Zhi-Chao. Hypoxia induces endothelia-mesenchymal transition in pulmonary vascular remodeling. Int. J. Mol. Med, 2018; 42:270-278.
[7] Liu Chaofan, Zhou Xing, Lu Jinghao, Zhu Lubing, Li Ming. Autophagy mediates 2-methoxyestradiol-inhibited scleroderma collagen synthesis and endothelial-to-mesenchymal transition induced by hypoxia. Rheumatology (Oxford). 2019; 58:1966-1975.
[8] Sniegon Isabella, Prieß Mona, Heger Jacqueline, Schulz Rainer, Euler Gerhild. Endothelial Mesenchymal Transition in Hypoxic Microvascular Endothelial Cells and Paracrine Induction of Cardiomyocyte Apoptosis Are Mediated via TGFβ1/SMAD Signaling. Int J Mol Sci. 2017; doi:10. 3390/ijms18112290.
[9] Cortes Ernesto, Lachowski Dariusz, Robinson Benjamin, Sarper Muge, Teppo Jaakko S, Thorpe Stephen D, et al. Tamoxifen mechanically reprograms the tumor microenvironment via HIF-1A and reduces cancer cell survival. EMBO Rep. 2019; doi:10.15252/embr.201846557.
[10] Xiong Anji, Liu Yi. Targeting Hypoxia Inducible Factors-1α As a Novel Therapy in Fibrosis. Front Pharmacol. 2017; 8:326.
[11] Xu Xingbo, Tan Xiaoying, Tampe Björn, Sanchez Elisa, Zeisberg Michael, Zeisberg Elisabeth M. Snail Is a Direct Target of Hypoxia-inducible Factor 1α (HIF1α) in Hypoxia-induced Endothelial to Mesenchymal Transition of Human Coronary Endothelial Cells. J. Biol. Chem. 2015; 290:16653-64.
[12] Deng Wei, Feng Xuebing, Li Xia, Wang Dandan, Sun Lingyun. Hypoxia-inducible factor 1 in autoimmune diseases. Cell. Immunol. 2016; 303:7-15.
[13] Ioannou Maria, Pyrpasopoulou Athina, Simos Georgios, Paraskeva Efrosyni, Nikolaidou Christina, Venizelos Ioannis, et al. Upregulation of VEGF expression is associated with accumulation of HIF-1α in the skin of naïve scleroderma patients. Mod Rheumatol. 2013; 23:1245-8.
[14] Zhang Jie, Wang Qian, Wang Qiang, Guo Peng, Wang Yong, Xing Yuqing, et al. Chrysophanol exhibits anti-cancer activities in lung cancer cell through regulating ROS/HIF-1a/VEGF signaling pathway. Naunyn Schmiedebergs Arch. Pharmacol. 2020; 393:469-480.
[15] van den Hoogen Frank, Khanna Dinesh, Fransen Jaap, Johnson Sindhu R, Baron Murray, Tyndall Alan, et al. 2013 classification criteria for systemic sclerosis: an American college of rheumatology/European league against rheumatism collaborative initiative. Ann. Rheum. Dis. 2013; 72:1747-55.
[16] Bahrami Bobak, Shen Weiyong, Zhu Ling, Zhang Ting, Chang Andrew, Gillies Mark C. Effects of VEGF inhibitors on human retinal pigment epithelium under high glucose and hypoxia. Clin. Experiment. Ophthalmol. 2019; 47:1074-1081.
[17] Rubio-Rivas Manuel, Royo Cristina, Simeón Carmen Pilar, Corbella Xavier, Fonollosa Vicent. Mortality and survival in systemic sclerosis: systematic review and meta-analysis. Semin. Arthritis Rheum. 2014; 44:208-219.
[18] M. R. Pokeerbux, J. Giovannelli, L. Dauchet, L.Mouthon, C. Agard, J. C. Lega, et al. Survival and prognosis factors in systemic sclerosis: data of a French multicenter cohort, systematic review, and meta-analysis of the literature. Arthritis Res Ther. 2019; 21:86.
[19] Shouval R, Furie N, Raanani P, Nagler A, Gafter-Gvili A. Autologous Hematopoietic Stem Cell Transplantation for Systemic Sclerosis: A Systematic Review and Meta-Analysis. Biol. Blood Marrow Transplant. 2018; 24:937-944.
[20] Meunier P, Dequidt L, Barnetche T, Lazaro E, Duffau P, Richez C, et al. Increased risk of mortality in systemic sclerosis-associated digital ulcers: a systematic reviewand meta-analysis. J Eur Acad Dermatol Venereol. 2019; 33:405-409.
[21] Ota Y, Kuwana M. Endothelial cells and endothelial progenitor cells in the pathogenesis of systemic sclerosis. Eur J Rheumatol. 2019; doi:10.5152/eurjrheum.2019.19158.
[22] Michael Hughes, Yannick Allanore , Lorinda Chung , John D Pauling , Christopher P Denton , Marco Matucci-Cerinic . Raynaud Phenomenon and Digital Ulcers in Systemic Sclerosis. Nat Rev Rheumatol. 2020; 16(4): 208-221.
[23] Denton, C. P. & Khanna, D. K. Systemic sclerosis. Lancet. 2017; 390:1685-1699.
[24] Meier Florian M P, Frommer Klaus W, Dinser Robert, Walker Ulrich A, Czirjak Laszlo, Denton Christopher P, et al. Update on the profile of the EUSTAR cohort: an analysis of the EULAR Scleroderma Trials and Research group database. Ann. Rheum. Dis. 2012; 71:1355–1360.
[25] Wirz Elina G, Jaeger Veronika K, Allanore Yannick, Riemekasten Gabriela, Hachulla Eric, Distler Oliver, et al. Incidence and predictors of cutaneous manifestations during the early course of systemic sclerosis: a 10-year longitudinal study from the EUSTAR database. Ann. Rheum. Dis. 2015; 75:1285-1292.
[26] Rosa I, Romano E, Fioretto BS, Manetti M1. The contribution of mesenchymal transitions to the pathogenesis of systemic sclerosis. Eur J Rheumatol. 2019; doi:10.5152/eurjrheum.2019.19081.
[27] Manetti M, Guiducci S, Matucci-Cerinic M. The origin of the myo fibroblast in fibroproliferative vasculopathy: does the endothelial cell steer the pathophysiology of systemic sclerosis? Arthritis Rheum. 2011; 63:2164-7.
[28] van Hal TW, van Bon L, Radstake TR. A system out of breath: how hypoxia possibly contributes to the pathogenesis of systemic sclerosis. Int J Rheumatol. 2011; 2011:824972.
[29] Li Tangzhiming, Zha Lihuang, Luo Hui, Li Suqi, Zhao Lin, He Jingni, et al. Galectin-3 Mediates Endothelial-to-Mesenchymal Transition in Pulmonary Arterial Hypertension. Aging Dis. 2019; 10:731-745.
[30] Zhang Cong-Cong, Zhang Jing-Jing, Chen Jun-Hao, Wu Yuan-Ling, Huang Dan-Na, Dai Yong-Yue, et al. The effect of Yiqi Wenyang Huoxue Huatan Fang on hypoxia-hypercarbia induced pulmonary hypertension and its mechanism. Zhongguo Ying Yong Sheng Li Xue Za Zhi. 2018; 34:408-413.
[31] Cipriani Paola, Di Benedetto Paola, Ruscitti Piero, Capece Daria, Zazzeroni Francesca, Liakouli Vasiliki, et al. The endothelial mesenchymal transition in systemic sclerosis is induced by endothelin-1 and transforming growth factor-and may be blocked by macitentan, a dual endothelin-1 receptor antagonist. Journal of Rheumatology. 2015; 42(10):808-1816.
[32] Stefano Soldano, Sabrina Paolino, Carmen Pizzorni, Amelia Chiara Trombetta, Paola Montagna, Renata Brizzolara, et al. Dual Endothelin Receptor Antagonists Contrast the Effects Induced by endothelin-1 on Cultured Human Microvascular Endothelial Cells. Clin Exp Rheumatol. 2017; 35(3):484- 493.
[33] Corallo C, Cutolo M, Kahaleh B, Pecetti G, Montella A, Chirico C, et al. Bosentan and macitentan prevent the endothelial-to-mesenchymal transition (EndoMT) in systemic sclerosis: in vitro study. Arthritis Res Ther. 2016; 18(1): 228.
[34] Bruick RK, McKnight SL. A conserved family of prolyl-4-hydroxylases that modify HIF. Science. 2001; 294:1337-40.
[35] Ke Q, Costa M. Hypoxia-inducible factor-1 (HIF-1). Mol Pharmacol. 2006; 70:1469–1480.
[36] Simon Siao-Pin, Laura-Otilia Damian, Laura Mirela Muntean, Simona Rednic. Acroosteolysis in systemic sclerosis: An insight into hypoxia-related pathogenesis. Exp Ther Med. 2016. 12:3459–3463.
[37] Ivan Mircea, Haberberger Thomas, Gervasi David C, Michelson Kristen S, Günzler Volkmar, Kondo Keiichi, et al. Biochemical purification and pharmacological inhibition of a mammalian prolyl hydroxylase acting on hypoxia-inducible factor. Proceedings of the National Academy of Sciences of the United States of America. 2002; 99:13459–13464.
[38] van Hal T W, van Bon L, Radstake T R D J. A system out of breath: how hypoxia possibly contributes to the pathogenesis of systemic sclerosis. Int J Rheumatol. 2011; 2011:824972.
[39] Semenza GL. Hypoxia-inducible factors in physiology and medicine. Cell 2012; 148:399-408.
[40] Lokmic Z, Musyoka J, Hewitson TD, Darby IA. Hypoxia and hypoxia signaling in tissue repair and fibrosis. Int Rev Cell Mol Biol. 2012; 296:139-85.
[41] Haase VH. Pathophysiological consequences of HIF activation: HIF as a modulator of fibrosis. Ann N Y Acad Sci. 2009; 1177:57-65.
[42] Distler Oliver, Distler Jörg H W, Scheid Annette, Acker Till, Hirth Astrid, Rethage Janine, et al. Uncontrolled expression of vascular endothelial growth factor and its receptors leads to insufficient skin angiogenesis in patients with systemic sclerosis. Circ. Res. 2004; 95:109-16.